Suppr超能文献

基于深度学习的心胸 CT 指标和实验室检查全自动提取技术对 COVID-19 患者管理的预测。

Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings.

机构信息

Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland.

Siemens Healthineers, Princeton, NJ, USA.

出版信息

Korean J Radiol. 2021 Jun;22(6):994-1004. doi: 10.3348/kjr.2020.0994. Epub 2021 Feb 24.

Abstract

OBJECTIVE

To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management.

MATERIALS AND METHODS

All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans.

RESULTS

While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88).

CONCLUSION

Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.

摘要

目的

使用完全自动化的深度学习方法从 2020 年 3 月 25 日至 4 月 25 日在我们急诊科检测出严重急性呼吸综合征冠状病毒 2 呈阳性的患者的胸部 CT 中提取肺部和心血管指标,并评估其预测患者管理的潜力。

材料与方法

共纳入 120 例在我院急诊科检测出严重急性呼吸综合征冠状病毒 2 呈阳性的患者的初始胸部 CT 图像。根据患者管理分为三组:第 1 组(门诊)、第 2 组(普通病房)和第 3 组(重症监护病房[ICU])。使用深度学习从胸部 CT 图像中提取多个肺部和心血管指标,并考虑了 6 项表明炎症和细胞损伤的实验室发现。评估了不同管理组之间的 CT 指标、实验室发现和人口统计学差异。使用逻辑回归和受试者工作特征曲线分析这些参数预测患者需要 ICU 护理(是/否)的能力。使用 109 份独立的胸部 CT 扫描评估内部和外部有效性。

结果

尽管单独的人口统计学参数(性别和年龄)不足以预测 ICU 管理状态,但单独的 CT 指标(包括肺部和心血管指标;曲线下面积[AUC] = 0.88;95%置信区间[CI] = 0.79-0.97)和单独的实验室发现(C 反应蛋白、乳酸脱氢酶、白细胞计数和白蛋白;AUC = 0.86;95%CI = 0.77-0.94)都是很好的分类器。结合人口统计学参数、CT 指标和实验室发现的模型(AUC = 0.91;95%CI = 0.85-0.98)具有出色的性能。在另一家医院的数据集上应用结合了肺部 CT 指标和人口统计学参数的模型表明其具有外部有效性(AUC = 0.77;95%CI = 0.66-0.88)。

结论

COVID-19 患者的胸部 CT 包含可通过自动图像分析获取的有价值信息。这些指标可用于预测患者的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b704/8154782/b00fbb3b8347/kjr-22-994-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验