Ganganboina Akhilesh Babu, Takemura Kenshin, Zhang Wenjing, Li Tian-Cheng, Park Enoch Y
Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
Biosens Bioelectron. 2021 Aug 1;185:113261. doi: 10.1016/j.bios.2021.113261. Epub 2021 Apr 22.
Viral capsid-nanoparticle hybrid structures incorporating quantum dots (QDs) into virus-like particles (VLPs) constitute an emerging bioinspired type of nanoarchitecture paradigm used for various applications. In the present study, we packed inorganic QDs in vitro into the hepatitis E virus-like particle (HEV-LP) and developed a fluorometric biosensor for HEV antibody detection. Firstly, for the preparation of QDs-encapsulated HEV-LPs (QDs@HEV-LP), the HEV-LPs produced by a recombinant baculovirus expression system were disassembled and reassembled in the presence of QDs using the self-assembly approach. Thus, the prepared QDs@HEV-LP exhibited excellent fluorescence properties similar to QDs. Further, in the presence of HEV antibodies in the serum samples, when mixed with QDs@HEV-LP, bind together and further bind to anti-IgG-conjugated magnetic nanoparticles (MNPs). The target-specific anti-IgG-MNPs and QDs@HEV-LP enrich the HEV antibodies by magnetic separation, and the separated QDs@HEV-LP-bound HEV antibodies are quantified by fluorescence measurement. This developed method was applied to detect the HEV antibody from sera of HEV-infected monkey from 0 to 68 days-post-infection and successfully diagnosed for HEV antibodies. The viral RNA copies number from monkey fecal samples by RT-qPCR was compared to the HEV antibody generation. This study first used QDs-encapsulated VLPs as useful fluorescence emitters for biosensing platform construction. It provides an efficient route for highly sensitive and specific antibody detection in clinical diagnosis research.
将量子点(QDs)整合到病毒样颗粒(VLPs)中的病毒衣壳 - 纳米颗粒杂化结构构成了一种新兴的受生物启发的纳米结构范式,可用于各种应用。在本研究中,我们在体外将无机量子点包装到戊型肝炎病毒样颗粒(HEV - LP)中,并开发了一种用于检测戊型肝炎病毒抗体的荧光生物传感器。首先,为了制备包封量子点的戊型肝炎病毒样颗粒(QDs@HEV - LP),使用重组杆状病毒表达系统产生的戊型肝炎病毒样颗粒在量子点存在的情况下通过自组装方法进行拆解和重新组装。因此,制备的QDs@HEV - LP表现出与量子点相似的优异荧光特性。此外,在血清样本中存在戊型肝炎病毒抗体的情况下,当与QDs@HEV - LP混合时,它们会结合在一起,并进一步与抗IgG偶联的磁性纳米颗粒(MNPs)结合。靶向特异性抗IgG - MNPs和QDs@HEV - LP通过磁分离富集戊型肝炎病毒抗体,并且通过荧光测量对分离的与QDs@HEV - LP结合的戊型肝炎病毒抗体进行定量。这种开发的方法应用于检测感染戊型肝炎病毒的猴子在感染后0至68天血清中的戊型肝炎病毒抗体,并成功诊断出戊型肝炎病毒抗体。通过RT - qPCR比较了猴子粪便样本中的病毒RNA拷贝数与戊型肝炎病毒抗体的产生情况。本研究首次使用包封量子点的病毒样颗粒作为构建生物传感平台的有用荧光发射体。它为临床诊断研究中高灵敏度和特异性抗体检测提供了一条有效途径。