Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; International Master Degree Program on Energy, National Cheng Kung University, Tainan, 701, Taiwan.
Environ Pollut. 2021 Sep 15;285:117196. doi: 10.1016/j.envpol.2021.117196. Epub 2021 Apr 26.
This research aims to study the wet torrefaction (WT) and saccharification of sorghum distillery residue (SDR) towards hydrochar and bioethanol production. The experiments are designed by Box-Behnken design from response surface methodology where the operating conditions include sulfuric acid concentration (0, 0.01, and 0.02 M), amyloglucosidase concentration (36, 51, and 66 IU), and saccharification time (120, 180, and 240 min). Compared to conventional dry torrefaction, the hydrochar yield is between 13.24 and 14.73%, which is much lower than dry torrefaction biochar (yield >50%). The calorific value of the raw SDR is 17.15 MJ/kg, which is significantly enhanced to 22.36-23.37 MJ/kg after WT. When the sulfuric acid concentration increases from 0 to 0.02 M, the glucose concentration in the product increases from 5.59 g/L to 13.05 g/L. The prediction of analysis of variance suggests that the best combination to maximum glucose production is 0.02 M HSO, 66 IU enzyme concentration, and 120 min saccharification time, and the glucose concentration is 30.85 g/L. The maximum bioethanol concentration of 19.21 g/L is obtained, which is higher than those from wheat straw (18.1 g/L) and sweet sorghum residue (16.2 g/L). A large amount of SDR is generated in the kaoliang liquor production process, which may cause environmental problems if it is not appropriately treated. This study fulfills SDR valorization for hydrochar and bioenergy to lower environmental pollution and even achieve a circular economy.
本研究旨在通过湿式热解(WT)和糖化工艺将高粱酒糟(SDR)转化为水热炭和生物乙醇。实验采用 Box-Behnken 设计,响应面法优化操作条件,包括硫酸浓度(0、0.01 和 0.02 M)、糖化酶浓度(36、51 和 66 IU)和糖化时间(120、180 和 240 min)。与传统的干法热解相比,水热炭的产率在 13.24%至 14.73%之间,远低于干法热解生物炭(产率>50%)。原始 SDR 的热值为 17.15 MJ/kg,经 WT 后显著提高至 22.36-23.37 MJ/kg。随着硫酸浓度从 0 增加到 0.02 M,产物中的葡萄糖浓度从 5.59 g/L 增加到 13.05 g/L。方差分析的预测表明,获得最大葡萄糖产量的最佳组合为 0.02 M HSO、66 IU 酶浓度和 120 min 糖化时间,葡萄糖浓度为 30.85 g/L。最大生物乙醇浓度为 19.21 g/L,高于小麦秸秆(18.1 g/L)和甜高粱渣(16.2 g/L)。高粱酒生产过程中会产生大量的 SDR,如果处理不当,可能会造成环境问题。本研究通过水热炭和生物能源实现了 SDR 的增值利用,降低了环境污染,甚至实现了循环经济。