Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia.
Genome Biol Evol. 2021 Jul 6;13(7). doi: 10.1093/gbe/evab096.
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
真核生物起源的现代观点需要一个古菌宿主和一个变形菌内共生体之间的内共生遭遇,随后的进化产生了一个具有单个核和线粒体的单细胞。最后一个真核生物共同祖先(LECA)的单核状态很少受到质疑,即使细胞中存在多个核(合胞体、多核体和多核体)在真核超组中也非常常见。在这里,我们对多核体形式进行了调查。使用 16 种不同的可能根和超组姐妹关系,对 106 种真核生物分类群的代表进行了多基因状态重建,结果表明,LECA 除了具有线粒体、有性生殖和减数分裂外,还是多核体。LECA 表现出封闭的有丝分裂,这是现代合胞体形式的规则,揭示了其染色体分离的机制。一个简单的数学模型表明,在 LECA 的多核细胞质中,线粒体和核之间的关系既不是一对一,也不是一对多,而是多对多,将线粒体和核之间的相互作用和细胞质核兼容性置于真核细胞起源的进化基础上。在合胞体中,个体核和个体线粒体作为选择的初始较低水平进化单位,而不是个体细胞,在真核生物起源过程中发挥作用。合胞体中的核相互拯救彼此的致死突变,从而推迟了对可行核和细胞质核兼容性的选择,直到孢子的产生,缓冲了真核生物起源过程中的过渡瓶颈。传统上认为,从原核生物到真核生物的转变没有中间产物,但如果真核生物起源于合胞体共同祖先,那么中间产物就会一直存在于真核生物树中,作为合胞体,但迄今为止尚未被识别。