Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190188. doi: 10.1098/rstb.2019.0188. Epub 2019 Dec 2.
The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in , and from those of other systems, that mitonuclear interactions-either conflicting or cooperative-are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
线粒体-核基因组是地球上生命历史中最成功的协同进化共生体。线粒体和核基因组之间的交流已经被冲突和合作塑造了超过 15 亿年,然而这个系统已经适应了每个伙伴的无数基因组重组,并在不断变化的环境中适应了这些变化,这些变化给进化谱系带来了巨大的生化和生理压力。从假定的厌氧起源开始,线粒体成为了定义需氧的细胞器。在这个过渡过程中,两个基因组确定了性别决定和传递的规则,使单亲遗传成为主导,但不是普遍模式。线粒体不仅仅是产生能量的细胞器,它们在营养和应激信号传递中起着至关重要的作用,可以改变核基因作为表型的表达方式。所有这些相互作用都是基因型-环境(GxE)相互作用、基因-基因(GxG)相互作用(上位性)或更普遍的情况下,基因型和表型之间联系的上下文相关效应的例子。我们从自己在 中的研究以及其他系统的研究中提供证据,表明线粒体-核相互作用——无论是冲突还是合作——都是 GxE 和 GxG 的共同特征。我们认为,线粒体-核相互作用是一个重要的模型,可以更好地理解复杂表型结构背后普遍存在的上下文相关效应。该领域的未来研究应侧重于定量遗传效应大小的概念,以便将线粒体与表型的联系置于适当的背景下。本文是主题为“将线粒体基因型与表型联系起来:一项复杂的努力”的一部分。