Department of Pharmacology, University of California, Davis School of Medicine, California, USA.
Department of Cardiology, Yamaguchi University School of Medicine, Yamaguchi, Japan.
J Physiol. 2021 Jul;599(13):3267-3278. doi: 10.1113/JP281579. Epub 2021 Jun 5.
Increasing sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump activity enhances sarcoplasmic reticulum calcium (Ca) load, which increases both ryanodine receptor opening and driving force of Ca release flux. Both of these effects promote Ca spark formation and wave propagation. However, increasing SERCA activity also accelerates local cytosolic Ca decay as the wave front travels to the next cluster, which limits wave propagation. As a result, increasing SERCA pump activity has a biphasic effect on the propensity of arrhythmogenic Ca waves, but a monotonic effect to increase Ca spark frequency and amplitude.
Waves of sarcoplasmic reticulum (SR) calcium (Ca) release can cause arrhythmogenic afterdepolarizations in cardiac myocytes. Ca waves propagate when Ca sparks at one Ca release unit (CRU) recruit new Ca sparks in neighbouring CRUs. Under normal conditions, Ca sparks are too small to recruit neighbouring Ca sparks where Ca sensitivity is also low. However, under pathological conditions such as a Ca overload or ryanodine receptor (RyR) sensitization, Ca sparks can be larger and propagate more readily as macro-sparks or full Ca waves. Increasing SERCA pump activity promotes SR Ca load, which promotes RyR opening and increases driving force of the Ca release flux from SR to cytosol, promoting Ca waves. However, high sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) activity can also decrease local cytosolic [Ca] as it approaches the next CRU, thereby reducing wave appearance and propagation. In this study, we use a physiologically detailed model of subcellular Ca cycling and experiments in phospholamban-knockout mice, to show how Ca waves are initiated and propagate and how different conditions contribute to the generation and propagation of Ca waves. We show that reducing diffusive coupling between Ca sparks by increasing SERCA activity prevents Ca waves by reducing [Ca] at the next CRU, as do Ca buffers, low intra-SR Ca diffusion and distance between CRUs. Increasing SR Ca uptake rate has a biphasic effect on Ca wave propagation; initially it enhances Ca spark probability and amplitude and CRU coupling, thereby promoting arrhythmogenic Ca wave propagation, but at higher levels SR Ca uptake can abort those arrhythmogenic Ca waves.
增加肌浆网/内质网钙 ATP 酶(SERCA)泵的活性增强肌浆网钙(Ca)负荷,这会增加兰尼碱受体的开放和 Ca 释放通量的驱动力。这两种效应都促进 Ca 火花的形成和波的传播。然而,增加 SERCA 活性也会加速局部细胞溶质 Ca 的衰减,因为波前传播到下一个簇,这限制了波的传播。因此,增加 SERCA 泵的活性对心律失常性 Ca 波的倾向有双相影响,但对增加 Ca 火花频率和幅度有单调影响。
肌浆网(SR)钙(Ca)释放波可在心脏肌细胞中引起心律失常性后除极。当一个 Ca 释放单位(CRU)的 Ca 火花招募邻近的 CRU 中的新的 Ca 火花时,Ca 波传播。在正常情况下,Ca 火花太小,无法在 Ca 敏感性也较低的邻近 CRU 中招募 Ca 火花。然而,在 Ca 过载或兰尼碱受体(RyR)敏化等病理条件下,Ca 火花可以更大,并作为巨火花或全 Ca 波更易传播。增加 SERCA 泵的活性促进 SR Ca 负荷,从而促进 RyR 的开放,并增加从 SR 到细胞质的 Ca 释放通量的驱动力,促进 Ca 波的形成。然而,高肌浆/内质网钙 ATP 酶(SERCA)活性也可以降低临近下一个 CRU 的局部细胞质 [Ca],从而减少波的出现和传播。在这项研究中,我们使用了一个详细的亚细胞 Ca 循环的生理模型和磷酸酶敲除小鼠的实验,来展示 Ca 波是如何起始和传播的,以及不同的条件如何导致 Ca 波的产生和传播。我们表明,通过增加 SERCA 活性来减少 Ca 火花之间的扩散耦合,可以通过降低下一个 CRU 的 [Ca]来防止 Ca 波的形成,Ca 缓冲剂、低内 SR Ca 扩散和 CRU 之间的距离也是如此。增加 SR Ca 摄取率对 Ca 波传播有双相影响;它最初增强 Ca 火花的概率和幅度以及 CRU 耦合,从而促进心律失常性 Ca 波的传播,但在较高水平时,SR Ca 摄取可以中止那些心律失常性 Ca 波。