Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, Australia.
Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
Br J Clin Pharmacol. 2021 Dec;87(12):4681-4690. doi: 10.1111/bcp.14887. Epub 2021 May 21.
Oral flucloxacillin may be coadministered with probenecid to reduce flucloxacillin clearance and increase attainment of pharmacokinetic-pharmacodynamic (PK/PD) targets. The aims of this study were to develop a population PK model of free flucloxacillin when administered orally with probenecid, and to identify optimal dosing regimens for this combination.
We performed a prospective observational study of adults (45 participants) treated with oral flucloxacillin 1000 mg and probenecid 500 mg 8-hourly for proven or probable staphylococcal infections. Steady-state mid-dose-interval flucloxacillin measurements (45 concentrations) were combined with existing data from a crossover study of healthy participants receiving flucloxacillin with and without probenecid (11 participants, 363 concentrations). We developed a population pharmacokinetic model of free flucloxacillin concentrations within Monolix, and used Monte Carlo simulation to explore optimal dosing regimens to attain PK/PD targets proposed in the literature (free drug time above minimum inhibitory concentration).
Flucloxacillin disposition was best described by a 1-compartment model with a lag time and first-order absorption. Free flucloxacillin clearance depended on probenecid, allometrically-scaled fat free mass (FFM) and estimated glomerular filtration rate (eGFR). Predicted PK/PD target attainment was suboptimal with standard dosing regimens with flucloxacillin alone, but substantially improved in the presence of probenecid.
The simulation results reported can be used to identify dose regimens that optimise flucloxacillin exposure according to eGFR and FFM. Patients with higher FFM and eGFR may require the addition of probenecid and 6-hourly dosing to achieve PK/PD targets. The regimen was well-tolerated, suggesting a potential for further evaluation in controlled clinical trials to establish efficacy.
口服氟氯西林与丙磺舒合用可减少氟氯西林清除率,增加药代动力学/药效学(PK/PD)目标的实现。本研究旨在建立口服氟氯西林与丙磺舒合用的游离氟氯西林群体药代动力学模型,并确定该联合用药的最佳给药方案。
我们进行了一项前瞻性观察性研究,纳入 45 名成年人,给予口服氟氯西林 1000mg 和丙磺舒 500mg,每 8 小时 1 次,用于确诊或疑似葡萄球菌感染。合并稳态中剂量间隔氟氯西林测量(45 个浓度)与先前进行的一项健康参与者接受氟氯西林与不接受丙磺舒的交叉研究数据(11 名参与者,363 个浓度)。我们在 Monolix 中建立了游离氟氯西林浓度的群体药代动力学模型,并通过蒙特卡罗模拟探索达到文献中提出的 PK/PD 目标(游离药物时间超过最低抑菌浓度)的最佳给药方案。
氟氯西林处置最好用具有滞后时间和一级吸收的 1 室模型来描述。游离氟氯西林清除率取决于丙磺舒、非脂肪体质量(FFM)和估计肾小球滤过率(eGFR)的比例。单独使用氟氯西林的标准给药方案,预测的 PK/PD 目标实现情况不理想,但在存在丙磺舒时,情况显著改善。
报告的模拟结果可用于根据 eGFR 和 FFM 确定优化氟氯西林暴露的剂量方案。FFM 和 eGFR 较高的患者可能需要添加丙磺舒并进行 6 小时给药,以达到 PK/PD 目标。该方案耐受性良好,提示在对照临床试验中进一步评估以确定疗效的潜力。