Suppr超能文献

带有终末事件的零膨胀复发事件的半参数分析

Semiparametric analysis of zero-inflated recurrent events with a terminal event.

作者信息

Ma Chenchen, Hu Tao, Lin Zhantao

机构信息

Global Statistical Sciences, Eli Lilly and Company, Indianapolis, Indiana.

School of Mathematical Sciences, Capital Normal University, Beijing, People's Republic of China.

出版信息

Stat Med. 2021 Aug 15;40(18):4053-4067. doi: 10.1002/sim.9013. Epub 2021 May 8.

Abstract

Recurrent event data frequently arise in longitudinal studies and observations on recurrent events could be terminated by a major failure event such as death. In many situations, there exist a large fraction of subjects without any recurrent events of interest. Among these subjects, some are unsusceptible to recurrent events, while others are susceptible but have no recurrent events being observed due to censoring. In this article, we propose a zero-inflated generalized joint frailty model and a sieve maximum likelihood approach to analyze zero-inflated recurrent events with a terminal event. The model provides a considerable flexibility in formulating the effects of covariates on both recurrent events and the terminal event by specifying various transformation functions. In addition, Bernstein polynomials are employed to approximate the unknown cumulative baseline hazard (intensity) function. The estimation procedure can be easily implemented and is computationally fast. Extensive simulation studies are conducted and demonstrate that our proposed method works well for practical situations. Finally, we apply the method to analyze myocardial infarction recurrences in the presence of death in a clinical trial with cardiovascular outcomes.

摘要

复发事件数据经常出现在纵向研究中,对复发事件的观察可能会因死亡等重大失败事件而终止。在许多情况下,存在很大一部分受试者没有任何感兴趣的复发事件。在这些受试者中,一些对复发事件不敏感,而另一些则敏感,但由于删失而没有观察到复发事件。在本文中,我们提出了一种零膨胀广义联合脆弱模型和一种筛法极大似然方法来分析带有终末事件的零膨胀复发事件。该模型通过指定各种变换函数,在制定协变量对复发事件和终末事件的影响方面提供了相当大的灵活性。此外,采用伯恩斯坦多项式来近似未知的累积基线风险(强度)函数。估计过程易于实现且计算速度快。进行了广泛的模拟研究,结果表明我们提出的方法在实际情况下效果良好。最后,我们将该方法应用于一项心血管结局临床试验中存在死亡情况下心肌梗死复发的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验