Suppr超能文献

肺肿瘤的微波消融:基于模拟的治疗计划的概率方法。

Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning.

作者信息

Sebek Jan, Taeprasartsit Pinyo, Wibowo Henky, Beard Warren L, Bortel Radoslav, Prakash Punit

机构信息

Department of Electrical and Computer Engineering, Kansas State University Manhattan, KS, 66506, USA.

Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic.

出版信息

Med Phys. 2021 Jul;48(7):3991-4003. doi: 10.1002/mp.14923. Epub 2021 May 27.

Abstract

PURPOSE

Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters.

METHODS

We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes.

RESULTS

The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor.

CONCLUSIONS

An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.

摘要

目的

微波消融(MWA)是一种临床上已确立的治疗肺部肿瘤的方法。然而,现有MWA应用面临的一个挑战是局部肿瘤进展,这可能是由于未能建立足够的治疗边界所致。本研究提出了一种基于稳健模拟的治疗计划方法,以帮助操作人员根据候选应用能量参数,比较评估热分布以及实现指定最小边界的可能性。

方法

我们采用基于生物物理模拟的概率治疗计划方法,来评估候选治疗参数(即肿瘤内给定施源器位置的施加功率和消融持续时间)实现指定最小边界的可能性。对于功率和消融持续时间的每种考虑组合,以及肿瘤与正常肺组织生物物理特性对比的四种不同情况,评估了一组具有不同组织特性的模拟。然后组装了一个治疗计划图,从中可以评估候选施加功率和治疗持续时间组合所实现的最小消融区边界和附带损伤体积的分布。对于每个选定的功率和时间组合,操作人员还可以可视化叠加在肿瘤和靶体积上的消融区边界直方图。我们为直径1、2和2.5厘米的通用球形肿瘤组装了治疗计划图,并说明了组织异质性对所交付的治疗计划和所得消融直方图的影响。最后,我们在两个特定患者的不规则形状肿瘤的示例病例上展示了治疗计划方法。

结果

组装的治疗计划图表明,对于直径1厘米的球形肿瘤,在所有模拟病例中,30瓦、6分钟的消融可实现5毫米的最小边界;对于直径2.5厘米的球形肿瘤,70瓦、10分钟的消融在90%的模拟中可实现3毫米的最小边界。肿瘤与肺组织之间不同的组织异质性情况显示出消融持续时间总体上有2分钟的差异。对于直径2厘米的球形肿瘤,为了每次可靠地实现4毫米或更大的最小边界。

结论

展示了一种用于肺部肿瘤微波消融的基于模拟的治疗计划方法,以考虑治疗部位特定几何形状、组织特性不确定性以及肿瘤与正常肺之间的异质性的影响。

相似文献

1
Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning.
Med Phys. 2021 Jul;48(7):3991-4003. doi: 10.1002/mp.14923. Epub 2021 May 27.
2
Physical modeling of microwave ablation zone clinical margin variance.
Med Phys. 2016 Apr;43(4):1764. doi: 10.1118/1.4942980.
3
Percutaneous thermal ablation of primary and secondary lung tumors: Comparison between microwave and radiofrequency ablation.
Diagn Interv Imaging. 2019 Dec;100(12):781-791. doi: 10.1016/j.diii.2019.07.008. Epub 2019 Aug 8.
4
Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
PLoS One. 2020 Jun 15;15(6):e0233219. doi: 10.1371/journal.pone.0233219. eCollection 2020.
5
Thermal Ablation of Lung Tumors: Focus on Microwave Ablation.
Rofo. 2017 Sep;189(9):828-843. doi: 10.1055/s-0043-109010. Epub 2017 May 16.
6
Standardizing percutaneous Microwave Ablation in the treatment of Lung Tumors: a prospective multicenter trial (MALT study).
Eur Radiol. 2021 Apr;31(4):2173-2182. doi: 10.1007/s00330-020-07299-2. Epub 2020 Sep 30.
7
Microwave ablation trocar for ablating cancerous tumors: a numerical analysis.
Med Biol Eng Comput. 2023 May;61(5):1113-1131. doi: 10.1007/s11517-023-02781-7. Epub 2023 Jan 21.
10
Microwave ablation of the lung: Comparison of 19G with 14G and 16G microwave antennas in porcine lung.
J Cancer Res Ther. 2022 Dec;18(7):1876-1883. doi: 10.4103/jcrt.jcrt_1124_22.

引用本文的文献

1
Assessment of thermochromic phantoms for characterizing microwave ablation devices.
Med Phys. 2024 Nov;51(11):8442-8453. doi: 10.1002/mp.17404. Epub 2024 Sep 17.
3
Evaluation of an augmented reality navigational guidance platform for percutaneous procedures in a cadaver model.
J Med Imaging (Bellingham). 2024 Nov;11(6):062602. doi: 10.1117/1.JMI.11.6.062602. Epub 2024 Feb 15.
4
Percutaneous microwave ablation for lung tumors: a retrospective case-control study of conventional CT and C-arm CT guidance.
Quant Imaging Med Surg. 2023 Sep 1;13(9):5737-5747. doi: 10.21037/qims-22-985. Epub 2023 Aug 7.
5
6
Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors.
Int J Hyperthermia. 2022;39(1):1264-1275. doi: 10.1080/02656736.2022.2125590.
7
Clinical application status and prospect of the combined anti-tumor strategy of ablation and immunotherapy.
Front Immunol. 2022 Sep 5;13:965120. doi: 10.3389/fimmu.2022.965120. eCollection 2022.

本文引用的文献

1
Differences in the dielectric properties of various benign and malignant thyroid nodules.
Med Phys. 2021 Feb;48(2):760-769. doi: 10.1002/mp.14562. Epub 2020 Dec 16.
2
Bronchoscopically delivered microwave ablation in an porcine lung model.
ERJ Open Res. 2020 Oct 13;6(4). doi: 10.1183/23120541.00146-2020. eCollection 2020 Oct.
3
Validation of a Web-Based Planning Tool for Percutaneous Cryoablation of Renal Tumors.
Cardiovasc Intervent Radiol. 2020 Nov;43(11):1661-1670. doi: 10.1007/s00270-020-02634-y. Epub 2020 Sep 15.
4
Multiple objective planning for thermal ablation of liver tumors.
Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1775-1786. doi: 10.1007/s11548-020-02252-6. Epub 2020 Sep 3.
5
Experimental assessment of microwave ablation computational modeling with MR thermometry.
Med Phys. 2020 Sep;47(9):3777-3788. doi: 10.1002/mp.14318. Epub 2020 Jul 16.
6
Accounting for Deformation in Deep Brain Stimulation Surgery With Models: Comparison to Interventional Magnetic Resonance Imaging.
IEEE Trans Biomed Eng. 2020 Oct;67(10):2934-2944. doi: 10.1109/TBME.2020.2974102. Epub 2020 Feb 14.
7
Flexible bronchoscopy-guided microwave ablation in peripheral porcine lung: a new minimally-invasive ablation.
Transl Lung Cancer Res. 2019 Dec;8(6):787-796. doi: 10.21037/tlcr.2019.10.12.
8
Dielectric Properties of Normal and Metastatic Lymph Nodes Ex Vivo From Lung Cancer Surgeries.
Bioelectromagnetics. 2020 Feb;41(2):148-155. doi: 10.1002/bem.22246. Epub 2020 Jan 8.
10
Automatic Radiofrequency Ablation Planning for Liver Tumors With Multiple Constraints Based on Set Covering.
IEEE Trans Med Imaging. 2020 May;39(5):1459-1471. doi: 10.1109/TMI.2019.2950947. Epub 2019 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验