Suppr超能文献

一种用于去除 EEG 中肌肉伪影的新工具:提高伽马频带内的数据质量。

A novel tool for the removal of muscle artefacts from EEG: Improving data quality in the gamma frequency range.

机构信息

Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.

Department of Psychology and Centre for Brain Science, University of Essex, Colchester, UK.

出版信息

J Neurosci Methods. 2021 Jul 1;358:109217. doi: 10.1016/j.jneumeth.2021.109217. Epub 2021 May 5.

Abstract

BACKGROUND

The past two decades have seen a particular focus towards high-frequency neural activity in the gamma band (>30 Hz). However, gamma band activity shares frequency range with unwanted artefacts from muscular activity.

NEW METHOD

We developed a novel approach to remove muscle artefacts from neurophysiological data. We re-analysed existing EEG data that were decomposed by a blind source separation method (independent component analysis, ICA), which helped to better spatially and temporally separate single muscle spikes. We then applied an adapting algorithm that detects these singled-out muscle spikes.

RESULTS

We obtained data almost free from muscle artefacts; we needed to remove significantly fewer artefact components from the ICA and we included more trials for the statistical analysis compared to standard ICA artefact removal. All pain-related cortical effects in the gamma band have been preserved, which underlines the high efficacy and precision of this algorithm.

CONCLUSIONS

Our results show a significant improvement of data quality by preserving task-relevant gamma oscillations of presumed cortical origin. We were able to precisely detect, gauge, and carve out single muscle spikes from the time course of neurophysiological measures without perturbing cortical gamma. We advocate the application of the tool for studies investigating gamma activity that contain a rather low number of trials, as well as for data that are highly contaminated with muscle artefacts. This validation of our tool allows for the application on event-free continuous EEG, for which the artefact removal is more challenging.

摘要

背景

在过去的二十年中,人们特别关注伽马频段(>30Hz)的高频神经活动。然而,伽马频段活动与肌肉活动产生的不需要的伪迹共享频率范围。

新方法

我们开发了一种从神经生理数据中去除肌肉伪迹的新方法。我们重新分析了通过盲源分离方法(独立成分分析,ICA)分解的现有 EEG 数据,这有助于更好地在空间和时间上分离单个肌肉尖峰。然后,我们应用了一种自适应算法来检测这些单选出的肌肉尖峰。

结果

我们获得了几乎没有肌肉伪迹的数据;与标准 ICA 伪迹去除相比,我们需要从 ICA 中去除的伪迹分量显著减少,并且可以进行更多的统计分析。所有与疼痛相关的皮质伽马波段效应都得到了保留,这强调了该算法的高效性和精确性。

结论

我们的结果表明,通过保留假定源自皮质的与任务相关的伽马振荡,可以显著提高数据质量。我们能够精确地从神经生理测量的时间过程中检测、测量和剔除单个肌肉尖峰,而不会干扰皮质伽马。我们提倡将该工具应用于包含较少试验的伽马活动研究,以及高度受肌肉伪迹污染的数据。我们的工具的验证允许在事件自由的连续 EEG 上应用,在这种情况下,伪迹去除更具挑战性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验