School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
Sci Total Environ. 2021 Sep 10;786:147278. doi: 10.1016/j.scitotenv.2021.147278. Epub 2021 Apr 23.
Developing cleaner and affordable alternatives to the sole reliance on fossil fuels has intensified efforts to improve the thermochemical conversion property of the second-generation lignocellulosic biomass. This study aimed to explore the effects of the two torrefaction temperatures (200 and 300 °C), the two reaction atmospheres (N/O and CO/O), and the three heating rates (5, 10, and 15 °C/min) on the combustion regime of water hyacinth (WH). Decomposition behaviors, reaction kinetics, thermodynamics, and mechanisms, evolved emissions and functional groups, and fuel microstructure properties were quantified. The deoxygenation and dehydration reactions acted as the main drivers of the torrefaction process, with the peak degree of deoxygenation of 86.21% for WH torrefied at 300 °C (WH300). WH300 significantly reduced the quantity of oxygen-containing functional groups and altered the fuel microstructure properties. The order of the decomposition rates of the pseudo-components were hemicellulose > cellulose > lignin for both WH and WH torrefied at 200 °C (WH200) and cellulose > lignin > hemicellulose for WH300. The average activation energy fell from 197.71 to 195.71 kJ/mol for WH, 287.90 to 195.97 kJ/mol for WH200, and 226.92 to 184.94 kJ/mol for WH300 when the atmosphere changed from N/O to CO/O. The heating rate exerted a stronger control on their combustion behaviors than did the reaction atmosphere. CO, NO, and NO emissions dropped by 46.0, 53.1, and 65.9% for WH200 and 29.6, 42.8, and 62.5% for WH300, respectively, when compared to WH. 473.7 °C, 5 °C/min, and the CO/O atmosphere were the optimal settings for the maximized combustion efficiency. 717.1 °C was determined as the optimal setting for the minimized combustion emissions. Our study can yield new insights into the large-scale and cleaner combustion of the torrefied water hyacinth.
为了减少对化石燃料的单一依赖,开发更清洁、更经济的替代燃料,人们加大了对第二代木质纤维素热化学转化性能的研究力度。本研究旨在探讨两种热解温度(200℃和 300℃)、两种反应气氛(N/O 和 CO/O)和三种升温速率(5℃/min、10℃/min 和 15℃/min)对水葫芦燃烧特性的影响。测定了水葫芦及其热解产物的分解行为、反应动力学、热力学、机理、挥发分排放和官能团以及燃料微观结构特性。结果表明,脱氧和脱水反应是热解过程的主要驱动因素,在 300℃热解时,水葫芦的最大脱氧程度为 86.21%(WH300)。与未经热解的水葫芦相比,WH300 显著减少了含氧量官能团的数量,改变了燃料的微观结构特性。对于 WH 和在 200℃热解的水葫芦(WH200),伪组分的分解速率顺序为半纤维素>纤维素>木质素,而对于 WH300,分解速率顺序为纤维素>木质素>半纤维素。当气氛从 N/O 变为 CO/O 时,WH 的平均活化能从 197.71 kJ/mol 降至 195.71 kJ/mol,WH200 的平均活化能从 287.90 kJ/mol 降至 195.97 kJ/mol,WH300 的平均活化能从 226.92 kJ/mol 降至 184.94 kJ/mol。与气氛变化相比,升温速率对其燃烧行为的控制作用更强。与未经热解的水葫芦相比,在 200℃热解的水葫芦的 CO、NO 和 NO 排放量分别降低了 46.0%、53.1%和 65.9%,在 300℃热解的水葫芦的 CO、NO 和 NO 排放量分别降低了 29.6%、42.8%和 62.5%。对于 WH200 和 WH300,473.7℃、5℃/min 和 CO/O 气氛是实现最大燃烧效率的最佳条件。对于 WH200 和 WH300,717.1℃是实现最低燃烧排放的最佳条件。本研究可为水葫芦热解的大规模清洁燃烧提供新的见解。