Suppr超能文献

基于双层双随机性区间多目标规划模型的区域水资源管理

A dual-randomness bi-level interval multi-objective programming model for regional water resources management.

机构信息

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.

出版信息

J Contam Hydrol. 2021 Aug;241:103816. doi: 10.1016/j.jconhyd.2021.103816. Epub 2021 Apr 29.

Abstract

In this research, a dual-randomness bi-level interval multi-objective programming (DR-BIMP) model was developed for supporting water resources management among multiple water sectors under complexities and uncertainties. Techniques of bi-level multi-objective programming (BMOP), double-sided stochastic chance-constrained programming (DSCCP), and interval parameter programming (IPP) were incorporated into an integrated modeling framework to achieve comprehensive consideration of the complexities and uncertainties of water resources management systems. The DR-BIMP model can not only effectively deal with the interactive effects between multiple decision-makers in complex water management systems through the bi-level hierarchical strategies, but also can characterize the multiple uncertainties information expressed as interval format and probability density functions. It could thus improve upon the existing bi-level multi-objective programming through addressing discrete interval parameters and dual-randomness problems in optimization processes simultaneously. Then, the developed model was applied to a real-world case to optimally allocate water resources among three different water sectors in five sub-regions in the Dongjiang River basin, south China. The results of the model include determining values, interval values, and stochastic distribution information, which can assist bi-level decision-makers to plan future resources effectively to some extent. After comparing the variations of results, it is found that an increasing probability level can lead to higher system benefits, which is increased from [20,786.00, 26,425.92] × 10 CNY to [22,290.84, 27,492.57] × 10 CNY, while the Gini value is reduced from [0.365, 0.446] to [0.345, 0.405]. A set of increased probability levels gives rise to the lower-level objectives. Furthermore, the advantages of the DR-BIMP model were highlighted by comparing with the other models originated from the developed model. The comparison results indicated that the DR-BIMP model was a valuable tool for generating a range of decision alternatives and thus assists the bi-level decision-makers to identify the desired water resources allocation schemes under multiple scenarios.

摘要

在这项研究中,开发了一种双重随机性双层区间多目标规划(DR-BIMP)模型,用于支持多部门水资源管理中的复杂性和不确定性。双层多目标规划(BMOP)、双边随机机会约束规划(DSCCP)和区间参数规划(IPP)技术被整合到一个集成建模框架中,以实现对水资源管理系统复杂性和不确定性的综合考虑。DR-BIMP 模型不仅可以通过双层层次策略有效地处理复杂水资源管理系统中多个决策者之间的相互作用效应,还可以描述以区间格式和概率密度函数表示的多种不确定性信息。因此,它可以通过同时解决优化过程中的离散区间参数和双重随机性问题来改进现有的双层多目标规划。然后,将开发的模型应用于一个实际案例,在华南东江流域的五个分区中的三个不同水区之间优化水资源分配。模型的结果包括确定值、区间值和随机分布信息,这可以在一定程度上帮助双层决策者有效地规划未来的资源。通过比较结果的变化,可以发现概率水平的增加会导致系统效益的提高,从[20,786.00, 26,425.92]×10 CNY 增加到[22,290.84, 27,492.57]×10 CNY,而基尼系数从[0.365, 0.446]降低到[0.345, 0.405]。一组增加的概率水平会导致较低层次的目标。此外,通过与源自开发模型的其他模型进行比较,突出了 DR-BIMP 模型的优势。比较结果表明,DR-BIMP 模型是生成一系列决策替代方案的有价值的工具,从而帮助双层决策者在多种情况下识别所需的水资源分配方案。

相似文献

8
A two-stage fuzzy chance-constrained water management model.一种两阶段模糊机会约束水资源管理模型。
Environ Sci Pollut Res Int. 2017 May;24(13):12437-12454. doi: 10.1007/s11356-017-8725-y. Epub 2017 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验