Suppr超能文献

开发智能访谈者以收集病史:经验教训和指南。

Developing Intelligent Interviewers to Collect the Medical History: Lessons Learned and Guidelines.

机构信息

Bern University of Applied Sciences, Bern, Switzerland.

Hochschule Harz, Wernigerode, Germany.

出版信息

Stud Health Technol Inform. 2021 May 7;279:18-25. doi: 10.3233/SHTI210083.

Abstract

BACKGROUND

Physicians spend a lot of time in routine tasks, i.e. repetitive and time consuming tasks that are essential for the diagnostic and treatment process. One of these tasks is to collect information on the patient's medical history.

OBJECTIVES

We aim at developing a prototype for an intelligent interviewer that collects the medical history of a patient before the patient-doctor encounter. From this and our previous experiences in developing similar systems, we derive recommendations for developing intelligent interviewers for concrete medical domains and tasks.

METHODS

The intelligent interviewer was implemented as chatbot using IBM Watson assistant in close cooperation with a family doctor.

RESULTS

AnCha is a rule-based chatbot realized as decision tree with 75 nodes. It asks a maximum of 44 questions on the medical history, current complaints and collects additional information on the patient, social details, and prevention.

CONCLUSION

When developing an intelligent digital interviewer it is essential to define its concrete purpose, specify information to be collected, design the user interface, consider data security and conduct a practice-oriented evaluation.

摘要

背景

医生在日常工作中花费大量时间处理重复性和耗时的任务,这些任务对于诊断和治疗过程至关重要。其中一项任务是收集患者病史信息。

目的

我们旨在开发一种原型智能采访者,在医患见面之前收集患者的病史。从这一点以及我们在开发类似系统方面的以往经验中,我们得出了针对具体医学领域和任务开发智能采访者的建议。

方法

智能采访者使用 IBM Watson assistant 作为聊天机器人实现,与家庭医生密切合作。

结果

AnCha 是一个基于规则的聊天机器人,实现为具有 75 个节点的决策树。它最多可以询问 44 个关于病史、当前投诉的问题,并收集有关患者、社会详细信息和预防措施的额外信息。

结论

在开发智能数字采访者时,必须明确其具体目的、指定要收集的信息、设计用户界面、考虑数据安全并进行面向实践的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验