Nolasco Sofia, Bellido Javier, Serna Marina, Carmona Bruno, Soares Helena, Zabala Juan Carlos
Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.
Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
Front Cell Dev Biol. 2021 Apr 22;9:656273. doi: 10.3389/fcell.2021.656273. eCollection 2021.
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
秋水仙碱一直被用于治疗痛风,最近还被用于有效预防自身炎症性疾病以及原发性和复发性心包炎。秋水仙碱的抗炎作用似乎源于通过与微管蛋白异二聚体结合不可逆地抑制微管蛋白聚合和微管(MT)组装,从而避免激活整个NLRP3炎性小体所需的信号转导。新出现的结果表明,微管网络是心脏力学的潜在调节因子。在此,我们研究了秋水仙碱如何影响微管蛋白折叠辅助因子TBCA、TBCB和TBCE的活性。我们发现TBCA在小鼠心脏不溶性蛋白提取物中含量丰富。此外,在用秋水仙碱处理的人类细胞中,观察到TBCA/β-微管蛋白复合物减少,随后游离TBCA增加。在用其他抗有丝分裂剂(如诺考达唑或冷休克)处理的细胞中,以及在用环己酰亚胺抑制翻译后,均未观察到游离TBCA的存在。 实验表明,秋水仙碱抑制TBCE/TBCB介导的微管蛋白异二聚体解离,可能是通过干扰TBCE与微管蛋白二聚体的相互作用,导致游离TBCA的产生。通过RNA干扰或过表达操纵TBCA水平会导致微管蛋白异二聚体水平降低。总之,这些数据强烈表明,TBCA主要从预先存在的异二聚体解离中接收β-微管蛋白,而不是新合成的微管蛋白。TBCE/TBCB+TBCA系统对于通过回收微管蛋白异二聚体来控制细胞中游离微管蛋白异二聚体的临界浓度和微管动力学至关重要。可以想象,秋水仙碱通过TBCE/TBCB+TBCA系统影响微管蛋白异二聚体的回收,从而在治疗心包炎中产生已知的益处。