Suppr超能文献

基于微计算机断层扫描的ST段抬高型心肌梗死患者血栓负荷特征量化及其与血管造影结果的关联:QUEST-STEMI研究

Micro-CT-Based Quantification of Extracted Thrombus Burden Characteristics and Association With Angiographic Outcomes in Patients With ST-Elevation Myocardial Infarction: The QUEST-STEMI Study.

作者信息

Karagiannidis Efstratios, Papazoglou Andreas S, Sofidis Georgios, Chatzinikolaou Evangelia, Keklikoglou Kleoniki, Panteris Eleftherios, Kartas Anastasios, Stalikas Nikolaos, Zegkos Thomas, Girtovitis Fotios, Moysidis Dimitrios V, Stefanopoulos Leandros, Koupidis Kleanthis, Hadjimiltiades Stavros, Giannakoulas George, Arvanitidis Christos, Michaelson James S, Karvounis Haralambos, Sianos Georgios

机构信息

First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece.

出版信息

Front Cardiovasc Med. 2021 Apr 21;8:646064. doi: 10.3389/fcvm.2021.646064. eCollection 2021.

Abstract

Angiographic detection of thrombus in STEMI is associated with adverse outcomes. However, routine thrombus aspiration failed to demonstrate the anticipated benefit. Hence, management of high coronary thrombus burden remains challenging. We sought to assess for the first time extracted thrombotic material characteristics utilizing micro-computed tomography (micro-CT). One hundred thirteen STEMI patients undergoing thrombus aspiration were enrolled. Micro-CT was undertaken to quantify retrieved thrombus volume, surface, and density. Correlation of these indices with angiographic and electrocardiographic outcomes was performed. Mean aspirated thrombus volume, surface, and density (±standard deviation) were 15.71 ± 20.10 mm, 302.89 ± 692.54 mm, and 3139.04 ± 901.88 Hounsfield units, respectively. Aspirated volume and surface were significantly higher ( < 0.001) in patients with higher angiographic thrombus burden. After multivariable analysis, independent predictors for thrombus volume were reference vessel diameter (RVD) ( = 0.011), right coronary artery (RCA) ( = 0.039), and smoking ( = 0.027), whereas RVD ( = 0.018) and RCA ( = 0.019) were predictive for thrombus surface. Thrombus volume and surface were independently associated with distal embolization ( = 0.007 and = 0.028, respectively), no-reflow phenomenon ( = 0.002 and = 0.006, respectively), and angiographically evident residual thrombus ( = 0.007 and = 0.002, respectively). Higher thrombus density was correlated with worse pre-procedural TIMI flow ( < 0.001). Patients with higher aspirated volume and surface developed less ST resolution ( = 0.042 and = 0.023, respectively). Angiographic outcomes linked with worse prognosis were more frequent among patients with larger extracted thrombus. Despite retrieving larger thrombus load in these patients, current thrombectomy devices fail to deal with thrombotic material adequately. Further studies of novel thrombus aspiration technologies are warranted to improve patient outcomes. QUEST-STEMI trial ClinicalTrials.gov number: NCT03429608 Date of registration: February 12, 2018. The study was prospectively registered.

摘要

ST段抬高型心肌梗死(STEMI)中血栓的血管造影检测与不良预后相关。然而,常规血栓抽吸未能显示出预期的益处。因此,高冠状动脉血栓负荷的管理仍然具有挑战性。我们首次试图利用微计算机断层扫描(micro-CT)评估提取的血栓物质特征。招募了113例接受血栓抽吸的STEMI患者。采用微计算机断层扫描来量化回收血栓的体积、表面积和密度。对这些指标与血管造影和心电图结果进行相关性分析。平均抽吸血栓体积、表面积和密度(±标准差)分别为15.71±20.10mm³、302.89±692.54mm²和3139.04±901.88亨氏单位。血管造影血栓负荷较高的患者,其抽吸体积和表面积显著更大(P<0.001)。多变量分析后,血栓体积的独立预测因素为参考血管直径(RVD)(P=0.011)、右冠状动脉(RCA)(P=0.039)和吸烟(P=0.027),而RVD(P=0.018)和RCA(P=0.019)可预测血栓表面积。血栓体积和表面积分别与远端栓塞(P=0.007和P=0.028)、无复流现象(P=0.002和P=0.006)以及血管造影可见的残余血栓(P=0.007和P=0.002)独立相关。较高的血栓密度与术前TIMI血流较差相关(P<0.001)。抽吸体积和表面积较大的患者ST段回落较少(分别为P=0.042和P=0.023)。在提取血栓较大的患者中,与预后较差相关的血管造影结果更为常见。尽管这些患者回收的血栓负荷较大,但目前的血栓切除术器械仍无法充分处理血栓物质。有必要对新型血栓抽吸技术进行进一步研究以改善患者预后。QUEST-STEMI试验ClinicalTrials.gov编号:NCT03429608注册日期:2018年2月12日。该研究为前瞻性注册研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e262/8096895/903fa08d9207/fcvm-08-646064-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验