Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan.
Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan.
J Cell Biochem. 2021 Oct;122(10):1313-1325. doi: 10.1002/jcb.29949. Epub 2021 May 10.
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
基于我们最近的发现,即多种受体介导的肥大细胞功能通过共同的信号级联进行调节,我们假设破骨细胞的形成和功能也受到类似的共同机制的控制。这些细胞来自相同的粒细胞/单核细胞祖细胞,除了细胞特异性受体外,还具有多种受体。在这两种细胞类型中,所有已知的受体都位于脂筏中,与募集的信号分子形成多蛋白复合物,并在受体结合后被内化。信号转导是通过一系列蛋白磷酸化进行的,其中衔接蛋白 LAT(T 细胞激活的连接蛋白)起着核心作用。与 LAT 磷酸化和脂筏内化相关的关键激酶是 Syk(脾酪氨酸激酶)和/或 Src 家族激酶,很可能是 Lck(淋巴细胞特异性蛋白酪氨酸激酶)。被激活的 SHP-1(Src 同源性 2 结构域包含的磷酸酶-1)通过去磷酸化磷酸化的 Syk 和 Lck 来终止信号转导和受体内化,从而抑制破骨细胞分化和其他功能。在恶性浆细胞(MM 细胞)中,SHP-1 也在控制存活和增殖所需的信号转导中发挥类似的不可或缺的作用,尽管 BLNK(B 细胞连接蛋白)是 B 细胞中 LAT 和 SLP-76(SH2 结构域包含的白细胞蛋白-76-kDa)的功能等同物,而不是 LAT。因此,在破骨细胞和 MM 细胞中,激活的 SHP-1 在受体介导的细胞功能中起负作用。然而,在成骨细胞中,激活的 SHP-1 通过阻止转录因子(如 Ostrix 和 Runx2)的下调和激活转录因子所需的β-连环蛋白的降解,促进分化、骨钙素生成和矿化。SHP-1 通过酪氨酸磷酸化和微摩尔剂量(M 剂量)的 CCRI 配体诱导的 SHP-1 激活而被激活。小分子化合物,如 A770041、索拉非尼、尼达尼布和多韦替尼,可缓解其自动抑制构象。M 剂量的 CCRI 配体或所述化合物激活 SHP-1 可能会阻止 MM 中骨病变的进展。