Suppr超能文献

微生物季节性促进自然生态系统土壤呼吸碳排放:一项模拟研究。

Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study.

机构信息

Department of Biology, San Diego State University, San Diego, CA, USA.

Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Glob Chang Biol. 2021 Jul;27(13):3035-3051. doi: 10.1111/gcb.15627. Epub 2021 May 10.

Abstract

Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial-climate interaction. We applied a microbial explicit model-CLM-Microbe-to evaluate the impacts of microbial seasonality on soil C cycling in terrestrial ecosystems. The CLM-Microbe model was validated in simulating belowground respiratory fluxes, that is, microbial respiration, root respiration, and soil respiration at the site level. On average, the CLM-Microbe model explained 72% (n = 19, p < 0.0001), 65% (n = 19, p < 0.0001), and 71% (n = 18, p < 0.0001) of the variation in microbial respiration, root respiration, and soil respiration, respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C content in top 1 m between the CLM-Microbe model with (CLM-Microbe) and without (CLM-Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to slight differences in simulating root respiration. Compared with the CLM-Microbe, the CLM-Microbe_wos underestimated the annual flux of microbial respiration by 0.6%-32% and annual flux of soil respiration by 0.4%-29% in natural biomes. Correspondingly, the CLM-Microbe_wos estimated higher soil organic C content in top 1 m (0.2%-7%) except for the sites in Arctic and boreal regions. Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical improvement for projecting soil C decomposition and reducing the uncertainties in global C cycle projection under the changing climate.

摘要

季节性是生物圈的一个重要特征,土壤碳(C)排放的季节性动态代表了调节陆地-气候相互作用的基本机制。我们应用了一个微生物显式模型-CLM-Microbe-来评估微生物季节性对陆地生态系统土壤 C 循环的影响。CLM-Microbe 模型在模拟地下呼吸通量方面得到了验证,即微生物呼吸、根呼吸和土壤呼吸。平均而言,CLM-Microbe 模型分别解释了微生物呼吸、根呼吸和土壤呼吸变异的 72%(n=19,p<0.0001)、65%(n=19,p<0.0001)和 71%(n=18,p<0.0001)。然后,我们比较了具有(CLM-Microbe)和不具有(CLM-Microbe_wos)土壤微生物生物量季节性动态的 CLM-Microbe 模型在自然生物群落中模拟的土壤呼吸通量和表层 1m 土壤有机 C 含量的模型模拟。去除土壤微生物季节性降低了模型模拟微生物呼吸和土壤呼吸的性能,但导致模拟根呼吸的差异很小。与 CLM-Microbe 相比,CLM-Microbe_wos 在自然生物群落中低估了微生物呼吸的年通量 0.6%-32%和土壤呼吸的年通量 0.4%-29%。相应地,CLM-Microbe_wos 估计表层 1m 的土壤有机 C 含量较高(0.2%-7%),除了北极和北方地区的站点。我们的研究结果表明,土壤微生物季节性增强了土壤呼吸 C 排放,导致 SOC 储存减少。对土壤微生物季节性的明确表示代表了在气候变化下预测土壤 C 分解和减少全球 C 循环预测不确定性的关键改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验