KRAS 继发突变导致对 KRAS G12C 抑制剂(索托拉西布和阿达格拉西布)获得性耐药及克服策略:体外实验的见解。

KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From In Vitro Experiments.

机构信息

Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.

Specialty Care Medicine, Medicine Division, Nippon Boehringer Ingelheim Co., Ltd., Tokyo, Japan.

出版信息

J Thorac Oncol. 2021 Aug;16(8):1321-1332. doi: 10.1016/j.jtho.2021.04.015. Epub 2021 May 7.

Abstract

INTRODUCTION

KRAS mutations have been recognized as undruggable for many years. Recently, novel KRAS G12C inhibitors, such as sotorasib and adagrasib, are being developed in clinical trials and have revealed promising results in metastatic NSCLC. Nevertheless, it is strongly anticipated that acquired resistance will limit their clinical use. In this study, we developed in vitro models of the KRAS G12C cancer, derived from resistant clones against sotorasib and adagrasib, and searched for secondary KRAS mutations as on-target resistance mechanisms to develop possible strategies to overcome such resistance.

METHODS

We chronically exposed Ba/F3 cells transduced with KRAS to sotorasib or adagrasib in the presence of N-ethyl-N-nitrosourea and searched for secondary KRAS mutations. Strategies to overcome resistance were also investigated.

RESULTS

We generated 142 Ba/F3 clones resistant to either sotorasib or adagrasib, of which 124 (87%) harbored secondary KRAS mutations. There were 12 different secondary KRAS mutations. Y96D and Y96S were resistant to both inhibitors. A combination of novel SOS1 inhibitor, BI-3406, and trametinib had potent activity against this resistance. Although G13D, R68M, A59S and A59T, which were highly resistant to sotorasib, remained sensitive to adagrasib, Q99L was resistant to adagrasib but sensitive to sotorasib.

CONCLUSIONS

We identified many secondary KRAS mutations causing resistance to sotorasib, adagrasib, or both, in vitro. The differential activities of these two inhibitors depending on the secondary mutations suggest sequential use in some cases. In addition, switching to BI-3406 plus trametinib might be a useful strategy to overcome acquired resistance owing to the secondary Y96D and Y96S mutations.

摘要

简介

多年来,KRAS 突变一直被认为是不可成药的。最近,新型 KRAS G12C 抑制剂,如 sotorasib 和 adagrasib,正在临床试验中开发,并在转移性 NSCLC 中显示出有前景的结果。然而,人们强烈预计获得性耐药性将限制其临床应用。在这项研究中,我们从对 sotorasib 和 adagrasib 耐药的克隆中开发了 KRAS G12C 癌症的体外模型,并寻找了次要的 KRAS 突变作为靶标耐药机制,以开发克服这种耐药性的可能策略。

方法

我们在存在 N-乙基-N-亚硝脲的情况下,将 KRAS 转导的 Ba/F3 细胞慢性暴露于 sotorasib 或 adagrasib 中,并寻找次要的 KRAS 突变。还研究了克服耐药性的策略。

结果

我们生成了 142 个对 sotorasib 或 adagrasib 耐药的 Ba/F3 克隆,其中 124 个(87%)携带次要 KRAS 突变。有 12 种不同的次要 KRAS 突变。Y96D 和 Y96S 对两种抑制剂均有耐药性。新型 SOS1 抑制剂 BI-3406 和 trametinib 的联合应用对这种耐药性具有强大的活性。虽然对 sotorasib 高度耐药的 G13D、R68M、A59S 和 A59T 仍然对 adagrasib 敏感,但 Q99L 对 adagrasib 耐药但对 sotorasib 敏感。

结论

我们在体外鉴定了许多导致 sotorasib、adagrasib 或两者耐药的次要 KRAS 突变。这两种抑制剂根据次要突变的不同活性表明在某些情况下可以顺序使用。此外,由于次要的 Y96D 和 Y96S 突变,切换到 BI-3406 加 trametinib 可能是克服获得性耐药的一种有用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索