From Dana-Farber Cancer Institute (M.M.A., S.L., J.D., J.O.J., K.E.L., H.F., K.M.H., B.M.W., P.A.J., A.J.A.), Massachusetts General Hospital (R.S.H., Y.P.H.), and Brigham and Women's Hospital (L.M.S., A.J.A.), Boston, and Broad Institute of MIT and Harvard (S.L., X.Y., N.S.P., D.E.R., K.M.H., A.J.A.) and Foundation Medicine (J.L., A.B.S.), Cambridge - all in Massachusetts; Henry Ford Cancer Institute, Detroit (I.I.R.); Memorial Sloan Kettering Cancer Center, New York (K.C.A., G.J.R., P.L.); Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Orange (V.W.Z., S.S.Z., S.-H.I.O.), Boundless Bio, La Jolla (J.W., J.C.), and Mirati Therapeutics, San Diego (L.D.E., L.W., J.D.L., P.O., J.G.C.) - all in California; Sarah Cannon Research Institute, Tennessee Oncology/OneOncology, Nashville (M.L.J.); the University of Colorado, Aurora (T.P.); and Resolution Bioscience, Kirkland, WA (L.P.L., K.G., M.L.).
N Engl J Med. 2021 Jun 24;384(25):2382-2393. doi: 10.1056/NEJMoa2105281.
Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRAS). The mechanisms of acquired resistance to these therapies are currently unknown.
Among patients with -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRAS inhibitors.
A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the allele. Acquired bypass mechanisms of resistance included amplification; activating mutations in , , , and ; oncogenic fusions involving , , , , and ; and loss-of-function mutations in and . In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of mutations that confer resistance to KRAS inhibitors.
Diverse genomic and histologic mechanisms impart resistance to covalent KRAS inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).
KRAS 抑制剂 adagrasib 和 sotorasib 的临床试验在携带 KRAS 甘氨酸-半胱氨酸氨基酸替换密码子 12(KRAS)的癌症中显示出有希望的活性。目前尚不清楚这些疗法获得性耐药的机制。
在接受 adagrasib 单药治疗的 -突变癌症患者中,我们进行了基因组和组织学分析,比较了治疗前样本和耐药后获得的样本。进行了基于细胞的实验来研究赋予 KRAS 抑制剂耐药性的突变。
共有 38 名患者纳入本研究:27 名患有非小细胞肺癌,10 名患有结直肠癌,1 名患有阑尾癌。在 17 名患者(队列的 45%)中检测到对 adagrasib 耐药的推定机制,其中 7 名(队列的 18%)存在多种同时存在的机制。获得性改变包括 G12D/R/V/W、G13D、Q61H、R68S、H95D/Q/R、Y96C 和 等位基因的高水平扩增。获得性耐药旁路机制包括 扩增; 、 、 、和中的激活突变;涉及 、 、 、和的致癌融合;以及 和 的功能丧失突变。在 9 名可获得配对组织活检样本的肺腺癌患者中有 2 名,观察到组织学转化为鳞状细胞癌,而未发现任何其他耐药机制。通过体外深度突变扫描筛选,我们系统地定义了赋予 KRAS 抑制剂耐药性的 突变景观。
多种基因组和组织学机制赋予了共价 KRAS 抑制剂耐药性,需要新的治疗策略来延迟和克服癌症患者的这种药物耐药性。(由 Mirati Therapeutics 等资助;ClinicalTrials.gov 编号,NCT03785249。)