School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
J Bacteriol. 2021 Jun 22;203(14):e0010921. doi: 10.1128/JB.00109-21.
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, , , , and . The gain-of-function mutations in constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in and caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
突变是细菌获得抗生素耐药性的常见手段之一。在缺乏主要抗生素外排泵 AcrAB 和 AcrEF 的大肠杆菌突变体中,突变可以激活导致抗生素耐药性增加的替代途径。在这项工作中,我们分离并表征了这种性质的补偿突变,这些突变定位在四个不同的调节基因、、、和中。中的功能获得突变使 BaeSR 双组分调节系统持续激活,从而增加 MdtABC 外排泵的表达。和中的错义或插入突变导致编码 MdtEF 外排泵的操纵子去阻遏。有趣的是,尽管依赖 MdtABC 获得抗生素耐药表型,但突变体的表达或其他已知的抗生素外排泵的表达并没有增加。相反,转录组测序(RNA-seq)数据显示出类似于“严格”RNA 聚合酶的基因表达谱,其中蛋白质和 DNA 生物合成途径下调,但对抗各种应激的途径上调。这些激活的应激途径中的一些也受一般应激σ因子 RpoS 控制。这里呈现的数据还表明,补偿突变可以协同作用,进一步将抗生素耐药性提高到类似于外排泵功能齐全的亲本菌株的水平。总之,这些发现突出了细菌绕过抗生素攻击的显著遗传能力,即使在没有主要固有抗生素耐药机制的情况下也是如此。细菌病原体的抗生素耐药性是一个慢性健康问题。细菌具有或获得各种抗生素耐药机制,其中最重要的是积累有益突变的能力,这些突变经常改变抗生素的靶标。在这里,我们在缺乏主要组成型表达的外排泵的背景下探索了大肠杆菌积累突变的能力,并确定了几个调节基因中的突变,这些突变通过激活特定或多效机制赋予了耐药性。