Allgood Samual C, Ewing Calvin A, Chu Weiping, Porwollik Steffen, McClelland Michael, Detweiler Corrella S
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA.
Microorganisms. 2025 Jun 29;13(7):1521. doi: 10.3390/microorganisms13071521.
Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen serovar Typhimurium ( Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. and Typhimurium mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules.
抗感染药物包括在感染情况下靶向微生物但在传统生长条件下缺乏抗菌活性的分子。我们之前描述了D66,一种小分子,它能在培养的巨噬细胞和小鼠组织内杀死革兰氏阴性病原体鼠伤寒血清型(鼠伤寒),且对宿主毒性较低。虽然D66在标准培养基中不能抑制细菌生长,但该化合物具有抑菌作用,并且在使外膜通透或降低外排泵活性的生长条件下,能破坏细胞膜电压梯度而不导致细胞裂解。为了深入了解D66的特定细菌靶点,我们采用了两种遗传学方法。对D66耐药性的筛选揭示了自发点突变,这些突变定位在基因内,该基因编码一种参与脂多糖核心分子生物合成的蛋白质。鼠伤寒突变体对抗生素的耐药性增加,表明其进入屏障更强。相反,参与外膜通透性或外排泵活性的基因中的鼠伤寒转座子插入在存在D66的情况下降低了适应性。这些观察结果共同强调了细菌细胞壁在保护革兰氏阴性细菌免受小分子侵害方面的重要性。