Suppr超能文献

一种具有营养相关参数的新型模型,用于预测癌症患者的总生存期。

A novel model with nutrition-related parameters for predicting overall survival of cancer patients.

机构信息

Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.

Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China.

出版信息

Support Care Cancer. 2021 Nov;29(11):6721-6730. doi: 10.1007/s00520-021-06272-z. Epub 2021 May 10.

Abstract

BACKGROUND

Increasing evidence indicates that nutritional status could influence the survival of cancer patients. This study aims to develop and validate a nomogram with nutrition-related parameters for predicting the overall survival of cancer patients.

PATIENTS AND METHODS

A total of 8749 patients from the multicentre cohort study in China were included as the primary cohort to develop the nomogram, and 696 of these patients were recruited as a validation cohort. Patients' nutritional status were assessed using the PG-SGA. LASSO regression models and Cox regression analysis were used for factor selection and nomogram development. The nomogram was then evaluated for its effectiveness in discrimination, calibration, and clinical usefulness by the C-index, calibration curves, and decision curve analysis. Kaplan-Meier survival curves were used to compare the survival rate.

RESULTS

Seven independent prognostic factors were identified and integrated into the nomogram. The C-index was 0.73 (95% CI, 0.72 to 0.74) and 0.77 (95% CI, 0.74 to 0.81) for the primary cohort and validation cohort, which were both higher than 0.59 (95% CI, 0.58 to 0.61) of the TNM staging system. DCA demonstrated that the nomogram was higher than the TNM staging system and the TNM staging system combined with PG-SGA. Significantly median overall survival differences were found by stratifying patients into different risk groups (score < 18.5 and ≥ 18.5) for each TNM category (all Ps < 0.001).

CONCLUSION

Our study screened out seven independent prognostic factors and successfully generated an easy-to-use nomogram, and validated and shown a better predictive validity for the overall survival of cancer patients.

摘要

背景

越来越多的证据表明,营养状况可能影响癌症患者的生存。本研究旨在开发和验证一个包含营养相关参数的列线图,以预测癌症患者的总生存情况。

方法

本研究纳入了来自中国多中心队列研究的 8749 例患者作为主要队列来开发列线图,其中 696 例患者被纳入验证队列。使用 PG-SGA 评估患者的营养状况。采用 LASSO 回归模型和 Cox 回归分析进行因素选择和列线图开发。通过 C 指数、校准曲线和决策曲线分析评估列线图的区分度、校准度和临床实用性。Kaplan-Meier 生存曲线用于比较生存率。

结果

确定了 7 个独立的预后因素,并将其整合到列线图中。主要队列和验证队列的 C 指数分别为 0.73(95%CI,0.72 至 0.74)和 0.77(95%CI,0.74 至 0.81),均高于 TNM 分期系统的 0.59(95%CI,0.58 至 0.61)。DCA 表明,列线图优于 TNM 分期系统和 TNM 分期系统联合 PG-SGA。根据每个 TNM 分期,将患者分为不同的风险组(评分<18.5 和≥18.5),发现中位总生存差异具有统计学意义(所有 P 值均<0.001)。

结论

本研究筛选出 7 个独立的预后因素,成功生成了一个易于使用的列线图,并验证和展示了对癌症患者总生存情况的更好预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验