Suppr超能文献

基于卷积神经网络的系统发生地理模型选择。

Phylogeographic model selection using convolutional neural networks.

机构信息

Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.

Departamento de Zoologia, Universidade de Brasília, Brasília, Brazil.

出版信息

Mol Ecol Resour. 2021 Nov;21(8):2661-2675. doi: 10.1111/1755-0998.13427. Epub 2021 Jun 2.

Abstract

The discipline of phylogeography has evolved rapidly in terms of the analytical toolkit used to analyse large genomic data sets. Despite substantial advances, analytical tools that could potentially address the challenges posed by increased model complexity have not been fully explored. For example, deep learning techniques are underutilized for phylogeographic model selection. In non-model organisms, the lack of information about their ecology and evolution can lead to uncertainty about which demographic models are appropriate. Here, we assess the utility of convolutional neural networks (CNNs) for assessing demographic models in South American lizards in the genus Norops. Three demographic scenarios (constant, expansion, and bottleneck) were considered for each of four inferred population-level lineages, and we found that the overall model accuracy was higher than 98% for all lineages. We then evaluated a set of 26 models that accounted for evolutionary relationships, gene flow, and changes in effective population size among the four lineages, identifying a single model with an estimated overall accuracy of 87% when using CNNs. The inferred demography of the lizard system suggests that gene flow between non-sister populations and changes in effective population sizes through time, probably in response to Pleistocene climatic oscillations, have shaped genetic diversity in this system. Approximate Bayesian computation (ABC) was applied to provide a comparison to the performance of CNNs. ABC was unable to identify a single model among the larger set of 26 models in the subsequent analysis. Our results demonstrate that CNNs can be easily and usefully incorporated into the phylogeographer's toolkit.

摘要

系统发生地理学领域在分析大型基因组数据集的分析工具方面取得了快速发展。尽管取得了重大进展,但尚未充分探索可能解决模型复杂性增加带来的挑战的分析工具。例如,深度学习技术在系统发生模型选择中的应用不足。在非模式生物中,由于缺乏有关其生态和进化的信息,因此不确定哪些人口模型是合适的。在这里,我们评估了卷积神经网络(CNN)在评估南美蜥蜴属 Norops 中的人口统计学模型中的效用。对于四个推断的种群谱系中的每一个,考虑了三个人口统计学场景(恒定,扩张和瓶颈),我们发现所有谱系的总体模型准确性均高于 98%。然后,我们评估了一组 26 个模型,这些模型考虑了进化关系,基因流以及四个谱系之间有效种群大小的变化,当使用 CNN 时,确定了一个具有估计总体准确性为 87%的单一模型。蜥蜴系统的推断人口统计学表明,非姐妹种群之间的基因流动以及有效种群大小随时间的变化(可能是对更新世气候波动的响应)塑造了该系统的遗传多样性。近似贝叶斯计算(ABC)被应用于与 CNN 性能进行比较。在随后的分析中,ABC 无法在更大的 26 个模型集中确定一个单一的模型。我们的结果表明,CNN 可以轻松,有效地纳入系统发生学家的工具包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验