Ye Shounuan, Chen Shuaishuai, Li Shuixing, Pan Youwen, Xia Xinxin, Fu Weifei, Zuo Lijian, Lu Xinhui, Shi Minmin, Chen Hongzheng
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China.
ChemSusChem. 2021 Sep 6;14(17):3599-3606. doi: 10.1002/cssc.202100689. Epub 2021 Jun 1.
To date, the fused-ring electron acceptors show the best photovoltaic performances, and the development of simple non-fullerene acceptors via intramolecular noncovalent interactions can reduce synthetic costs. In this work, four simple non-fullerene acceptors with an A-D-A'-D-A configuration (QCIC1, QCIC2, QCIC3, and QCIC4) were synthesized. They contained the same conjugated backbone (A': quinoxaline; D: cyclopentadithiophene; A: dicyano-indanone) but different halogen atoms and alkyl side chains. Due to the chlorination on the end-groups and the most and/or longest branched alkyl side chains on the backbone, the blended film composed of QCIC3 and donor poly{[2,6'-4,8-di(5-ethylhexylthienyl)benzo [1,2-b : 4,5-b']dithiophene]-alt-[5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c : 4',5'-c']dithiophene-4,8-dione)]} (PBDB-T) exhibited the strongest π-π stacking and the most suitable phase-separation domains among the four blended films. Therefore, the QCIC3-based organic solar cells yielded the highest power conversion efficiency of 10.55 %. This work provides a pathway to optimize the molecular arrangements and enhance the photovoltaic property of simple electron acceptors through subtle chemical modifications.
迄今为止,稠环电子受体展现出了最佳的光伏性能,并且通过分子内非共价相互作用来开发简单的非富勒烯受体能够降低合成成本。在这项工作中,合成了四种具有A-D-A'-D-A构型的简单非富勒烯受体(QCIC1、QCIC2、QCIC3和QCIC4)。它们含有相同的共轭主链(A':喹喔啉;D:环戊二噻吩;A:二氰基茚满酮),但具有不同的卤原子和烷基侧链。由于端基上的氯化以及主链上最多和/或最长的支链烷基侧链,由QCIC3与供体聚{[2,6'-4,8-二(5-乙基己基噻吩基)苯并[1,2-b : 4,5-b']二噻吩]-alt-[5,5-(1',3'-二-2-噻吩基-5',7'-双(2-乙基己基)苯并[1',2'-c : 4',5'-c']二噻吩-4,8-二酮)]}(PBDB-T)组成的共混膜在四种共混膜中表现出最强的π-π堆积和最合适的相分离域。因此,基于QCIC3的有机太阳能电池产生了10.55 %的最高功率转换效率。这项工作提供了一条通过精细化学修饰来优化分子排列并增强简单电子受体光伏性能的途径。