Fu Liya, Wang You-Gan
School of Mathematics and Statistics, Xi'an Jiaotong University, China.
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
Stat Methods Med Res. 2021 Aug;30(8):1800-1815. doi: 10.1177/09622802211012012. Epub 2021 May 11.
In robust regression, it is usually assumed that the distribution of the error term is symmetric or the data are symmetrically contaminated by outliers. However, this assumption is usually not satisfied in practical problems, and thus if the traditional robust methods, such as Tukey's biweight and Huber's method, are used to estimate the regression parameters, the efficiency of the parameter estimation can be lost. In this paper, we construct an asymmetric Tukey's biweight loss function with two tuning parameters and propose a data-driven method to find the most appropriate tuning parameters. Furthermore, we provide an adaptive algorithm to obtain robust and efficient parameter estimates. Our extensive simulation studies suggest that the proposed method performs better than the symmetric methods when error terms follow an asymmetric distribution or are asymmetrically contaminated. Finally, a cardiovascular risk factors dataset is analyzed to illustrate the proposed method.
在稳健回归中,通常假定误差项的分布是对称的,或者数据受到异常值的对称污染。然而,在实际问题中这个假定通常并不成立,因此,如果使用传统的稳健方法,如Tukey双权函数和Huber方法来估计回归参数,可能会损失参数估计的效率。在本文中,我们构建了一个带有两个调谐参数的非对称Tukey双权损失函数,并提出了一种数据驱动的方法来找到最合适的调谐参数。此外,我们提供了一种自适应算法来获得稳健且有效的参数估计。我们广泛的模拟研究表明,当误差项服从非对称分布或受到非对称污染时,所提出的方法比对称方法表现更好。最后,分析了一个心血管危险因素数据集以说明所提出的方法。