Abdul-Ganiyu Rashida, Venegas Leon A, Wang Xin, Puerner Charles, Arkowitz Robert A, Kay Brian K, Stone David E
Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
Université Côte D'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
Sci Signal. 2021 May 11;14(682):eabf4710. doi: 10.1126/scisignal.abf4710.
Budding yeast cells interpret shallow pheromone gradients from cells of the opposite mating type, polarize their growth toward the pheromone source, and fuse at the chemotropic growth site. We previously proposed a deterministic, gradient-sensing model that explains how yeast cells switch from the intrinsically positioned default polarity site (DS) to the gradient-aligned chemotropic site (CS) at the plasma membrane. Because phosphorylation of the mating-specific Gβ subunit is thought to be important for this process, we developed a biosensor that bound to phosphorylated but not unphosphorylated Gβ and monitored its spatiotemporal dynamics to test key predictions of our gradient-sensing model. In mating cells, the biosensor colocalized with both Gβ and receptor reporters at the DS and then tracked with them to the CS. The biosensor concentrated on the leading side of the tracking Gβ and receptor peaks and was the first to arrive and stop tracking at the CS. Our data showed that the concentrated localization of phosphorylated Gβ correlated with the tracking direction and final position of the G protein and receptor, consistent with the idea that gradient-regulated phosphorylation and dephosphorylation of Gβ contributes to gradient sensing. Cells expressing a nonphosphorylatable mutant form of Gβ exhibited defects in gradient tracking, orientation toward mating partners, and mating efficiency.
出芽酵母细胞能够解读来自相反交配型细胞的微弱信息素梯度,使其生长向信息素源极化,并在趋化生长位点融合。我们之前提出了一个确定性的梯度感知模型,该模型解释了酵母细胞如何从位于细胞质膜上的固有定位默认极性位点(DS)切换到与梯度对齐的趋化位点(CS)。由于交配特异性Gβ亚基的磷酸化被认为对这一过程很重要,我们开发了一种生物传感器,它能与磷酸化的而非未磷酸化的Gβ结合,并监测其时空动态,以测试我们梯度感知模型的关键预测。在交配细胞中,该生物传感器在DS处与Gβ和受体报告分子共定位,然后与它们一起追踪到CS。该生物传感器集中在追踪的Gβ和受体峰的前沿,并且是第一个到达并在CS处停止追踪的。我们的数据表明,磷酸化Gβ的集中定位与G蛋白和受体的追踪方向及最终位置相关,这与Gβ的梯度调节磷酸化和去磷酸化有助于梯度感知的观点一致。表达不可磷酸化突变形式Gβ的细胞在梯度追踪、朝向交配伙伴的定向以及交配效率方面表现出缺陷。