Suppr超能文献

细胞极性的化学梯度导向。

Orientation of Cell Polarity by Chemical Gradients.

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA; email:

Department of Pharmacology, University of North Carolina at Chapel Hill, North Carolina, USA.

出版信息

Annu Rev Biophys. 2022 May 9;51:431-451. doi: 10.1146/annurev-biophys-110821-071250. Epub 2022 Feb 7.

Abstract

Accurate decoding of spatial chemical landscapes is critical for many cell functions. Eukaryotic cells decode local chemical gradients to orient growth or movement in productive directions. Recent work on yeast model systems, whose gradient sensing pathways display much less complexity than those in animal cells, has suggested new paradigms for how these very small cells successfully exploit information in noisy and dynamic pheromone gradients to identify their mates. Pheromone receptors regulate a polarity circuit centered on the conserved Rho-family GTPase, Cdc42. The polarity circuit contains both positive and negative feedback pathways, allowing spontaneous symmetry breaking and also polarity site disassembly and relocation. Cdc42 orients the actin cytoskeleton, leading to focused vesicle traffic that promotes movement of the polarity site and also reshapes the cortical distribution of receptors at the cell surface. In this article, we review the advances from work on yeasts and compare them with the excitable signaling pathways that have been revealed in chemotactic animal cells.

摘要

准确解码空间化学景观对于许多细胞功能至关重要。真核细胞解码局部化学梯度,以朝着有利于生长或运动的方向定向。最近在酵母模型系统上的研究工作表明,这些梯度感应途径的复杂性远低于动物细胞中的那些,为这些非常小的细胞如何成功地利用噪声和动态信息来识别它们的伴侣提供了新的范例。信息素受体调节以保守的 Rho 家族 GTPase Cdc42 为中心的极性电路。极性电路包含正反馈和负反馈途径,允许自发对称破缺以及极性位点的拆卸和重新定位。Cdc42 使肌动球蛋白细胞骨架定向,导致专注的囊泡运输,从而促进极性位点的运动,并重塑细胞表面受体的皮质分布。在本文中,我们回顾了酵母研究工作的进展,并将其与在趋化性动物细胞中揭示的兴奋信号通路进行了比较。

相似文献

1
Orientation of Cell Polarity by Chemical Gradients.
Annu Rev Biophys. 2022 May 9;51:431-451. doi: 10.1146/annurev-biophys-110821-071250. Epub 2022 Feb 7.
2
Chemotactic movement of a polarity site enables yeast cells to find their mates.
Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2025445118.
3
Mechanistic insights into actin-driven polarity site movement in yeast.
Mol Biol Cell. 2020 May 1;31(10):1085-1102. doi: 10.1091/mbc.E20-01-0040. Epub 2020 Mar 18.
4
A Cellular System for Spatial Signal Decoding in Chemical Gradients.
Dev Cell. 2015 Nov 23;35(4):458-70. doi: 10.1016/j.devcel.2015.10.013. Epub 2015 Nov 12.
5
Symmetry breaking in the life cycle of the budding yeast.
Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a003384. doi: 10.1101/cshperspect.a003384.
6
Particle-based simulations reveal two positive feedback loops allow relocation and stabilization of the polarity site during yeast mating.
PLoS Comput Biol. 2023 Oct 2;19(10):e1011523. doi: 10.1371/journal.pcbi.1011523. eCollection 2023 Oct.
7
Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry.
Bioessays. 2015 Nov;37(11):1193-201. doi: 10.1002/bies.201500077. Epub 2015 Sep 4.
9
Polarity establishment by Cdc42: Key roles for positive feedback and differential mobility.
Small GTPases. 2019 Mar;10(2):130-137. doi: 10.1080/21541248.2016.1275370. Epub 2017 Mar 30.
10
Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in .
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6580-6589. doi: 10.1073/pnas.1912505117. Epub 2020 Mar 9.

引用本文的文献

1
Intracellular Ca waves in mammalian cells.
Biol Futur. 2025 Jun 29. doi: 10.1007/s42977-025-00270-6.
2
Negative feedback equalizes polarity sites in a multi-budding yeast.
Curr Biol. 2025 Jul 7;35(13):3022-3034.e4. doi: 10.1016/j.cub.2025.05.011. Epub 2025 Jun 6.
3
Polarity-JaM: an image analysis toolbox for cell polarity, junction and morphology quantification.
Nat Commun. 2025 Feb 8;16(1):1474. doi: 10.1038/s41467-025-56643-x.
4
Measuring Piezo1 and Actin Polarity in Chemokine-Stimulated Jurkat Cells During Live-Cell Imaging.
Bio Protoc. 2024 Oct 5;14(19):e5079. doi: 10.21769/BioProtoc.5079.
5
PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.
bioRxiv. 2024 Sep 15:2024.09.15.613115. doi: 10.1101/2024.09.15.613115.
6
The roles of yeast formins and their regulators Bud6 and Bil2 in the pheromone response.
Mol Biol Cell. 2024 Jun 1;35(6):ar85. doi: 10.1091/mbc.E23-11-0459. Epub 2024 Apr 24.
7
A dynamic partitioning mechanism polarizes membrane protein distribution.
Nat Commun. 2023 Nov 30;14(1):7909. doi: 10.1038/s41467-023-43615-2.
8
Durotaxis and negative durotaxis: where should cells go?
Commun Biol. 2023 Nov 16;6(1):1169. doi: 10.1038/s42003-023-05554-y.
9
Particle-based simulations reveal two positive feedback loops allow relocation and stabilization of the polarity site during yeast mating.
PLoS Comput Biol. 2023 Oct 2;19(10):e1011523. doi: 10.1371/journal.pcbi.1011523. eCollection 2023 Oct.
10
Single-cell directional sensing from just a few receptor binding events.
Biophys J. 2023 Aug 8;122(15):3108-3116. doi: 10.1016/j.bpj.2023.06.015. Epub 2023 Jun 24.

本文引用的文献

1
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement.
PLoS Comput Biol. 2021 Jul 15;17(7):e1008525. doi: 10.1371/journal.pcbi.1008525. eCollection 2021 Jul.
2
Chemotactic movement of a polarity site enables yeast cells to find their mates.
Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2025445118.
3
Phosphorylated Gβ is a directional cue during yeast gradient tracking.
Sci Signal. 2021 May 11;14(682):eabf4710. doi: 10.1126/scisignal.abf4710.
4
Bistability in the polarity circuit of yeast.
Mol Biol Cell. 2021 May 6:mbcE20070445. doi: 10.1091/mbc.E20-07-0445.
5
How cells determine the number of polarity sites.
Elife. 2021 Apr 26;10:e58768. doi: 10.7554/eLife.58768.
6
Exploratory polarization facilitates mating partner selection in .
Mol Biol Cell. 2021 May 1;32(10):1048-1063. doi: 10.1091/mbc.E21-02-0068. Epub 2021 Mar 10.
7
Mechanistic insights into actin-driven polarity site movement in yeast.
Mol Biol Cell. 2020 May 1;31(10):1085-1102. doi: 10.1091/mbc.E20-01-0040. Epub 2020 Mar 18.
8
Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase.
PLoS Biol. 2020 Jan 24;18(1):e3000600. doi: 10.1371/journal.pbio.3000600. eCollection 2020 Jan.
9
Ratiometric GPCR signaling enables directional sensing in yeast.
PLoS Biol. 2019 Oct 17;17(10):e3000484. doi: 10.1371/journal.pbio.3000484. eCollection 2019 Oct.
10
Cell confinement reveals a branched-actin independent circuit for neutrophil polarity.
PLoS Biol. 2019 Oct 10;17(10):e3000457. doi: 10.1371/journal.pbio.3000457. eCollection 2019 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验