Puyuelo-Valdes Pilar, Vallières Simon, Salvadori Martina, Fourmaux Sylvain, Payeur Stephane, Kieffer Jean-Claude, Hannachi Fazia, Antici Patrizio
INRS-EMT, 1650 blvd. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada.
CENBG, CNRS-IN2P3, Université de Bordeaux, 33175, Gradignan Cedex, France.
Sci Rep. 2021 May 11;11(1):9998. doi: 10.1038/s41598-021-86657-6.
Particle and radiation sources are widely employed in manifold applications. In the last decades, the upcoming of versatile, energetic, high-brilliance laser-based sources, as produced by intense laser-matter interactions, has introduced utilization of these sources in diverse areas, given their potential to complement or even outperform existing techniques. In this paper, we show that the interaction of an intense laser with a solid target produces a versatile, non-destructive, fast analysis technique that allows to switch from laser-driven PIXE (Particle-Induced X-ray Emission) to laser-driven XRF (X-ray Fluorescence) within single laser shots, by simply changing the atomic number of the interaction target. The combination of both processes improves the retrieval of constituents in materials and allows for volumetric analysis up to tens of microns and on cm large areas up to a detection threshold of ppms. This opens the route for a versatile, non-destructive, and fast combined analysis technique.
粒子和辐射源在众多应用中被广泛使用。在过去几十年里,由强激光与物质相互作用产生的多功能、高能、高亮度的基于激光的源的出现,鉴于其有潜力补充甚至超越现有技术,已使这些源在不同领域得到应用。在本文中,我们表明强激光与固体靶的相互作用产生了一种多功能、非破坏性、快速的分析技术,通过简单改变相互作用靶的原子序数,该技术能够在单次激光脉冲内从激光驱动的粒子诱导X射线发射(PIXE)切换到激光驱动的X射线荧光(XRF)。这两个过程的结合提高了材料中成分的检索能力,并允许进行高达几十微米的体积分析以及在厘米级大面积上进行分析,检测阈值可达百万分之一。这为一种多功能、非破坏性且快速的联合分析技术开辟了道路。