White Nathan, Seelig John-David, Loyalka Sudarshan K
Department of Mechanical & Aerospace Engineering, Lafferre Hall, University of Missouri, Columbia, MO, 65211, USA.
Statelligence LLC, 4470 Ashford Ct, St. Louis, MO, 63129, USA.
J Aerosol Sci. 2021 Sep;157:105806. doi: 10.1016/j.jaerosci.2021.105806. Epub 2021 May 7.
Monte Carlo simulations and integral equation techniques allow for the flexible and efficient computation of drag and diffusion coefficients for virus mimetic particles. We highlight a Monte Carlo method that is useful for computing the drag on biomimetic particles in the free-molecular regime and a numerical technique to solve a boundary integral equation (related to the Stokes equation) in the hydrodynamic limit. The free-molecular and the continuum results allow the construction of an approximation for the drag applicable over the full range of Knudsen numbers. Finally, we outline how this work will be useful in modeling viral transport in air and fluids and in viral morphology measurements and in viral separations via electrospray-differential mobility analyzers (ES-DMA).
蒙特卡罗模拟和积分方程技术能够灵活高效地计算病毒模拟颗粒的阻力和扩散系数。我们着重介绍一种蒙特卡罗方法,它有助于计算自由分子区域中仿生颗粒的阻力,以及一种在流体动力学极限下求解边界积分方程(与斯托克斯方程相关)的数值技术。自由分子和连续介质结果使得能够构建适用于整个克努森数范围的阻力近似值。最后,我们概述了这项工作将如何有助于模拟病毒在空气和流体中的传输、病毒形态测量以及通过电喷雾-差分迁移率分析仪(ES-DMA)进行病毒分离。