文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质的快速计算突变-反应扫描

Fast computational mutation-response scanning of proteins.

作者信息

Echave Julian

机构信息

Instituto de Ciencias Físicas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.

出版信息

PeerJ. 2021 Apr 21;9:e11330. doi: 10.7717/peerj.11330. eCollection 2021.


DOI:10.7717/peerj.11330
PMID:33976988
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8067912/
Abstract

Studying the effect of perturbations on protein structure is a basic approach in protein research. Important problems, such as predicting pathological mutations and understanding patterns of structural evolution, have been addressed by computational simulations that model mutations using forces and predict the resulting deformations. In single mutation-response scanning simulations, a sensitivity matrix is obtained by averaging deformations over point mutations. In double mutation-response scanning simulations, a compensation matrix is obtained by minimizing deformations over pairs of mutations. These very useful simulation-based methods may be too slow to deal with large proteins, protein complexes, or large protein databases. To address this issue, I derived analytical closed formulas to calculate the sensitivity and compensation matrices directly, without simulations. Here, I present these derivations and show that the resulting analytical methods are much faster than their simulation counterparts.

摘要

研究扰动对蛋白质结构的影响是蛋白质研究中的一种基本方法。诸如预测病理突变和理解结构进化模式等重要问题,已通过计算模拟得到解决,这些模拟使用力对突变进行建模并预测由此产生的变形。在单突变响应扫描模拟中,通过对单点突变的变形进行平均来获得灵敏度矩阵。在双突变响应扫描模拟中,通过最小化成对突变的变形来获得补偿矩阵。这些基于模拟的非常有用的方法可能处理大型蛋白质、蛋白质复合物或大型蛋白质数据库时速度太慢。为了解决这个问题,我推导了分析性的封闭公式,无需模拟即可直接计算灵敏度和补偿矩阵。在此,我展示这些推导过程,并表明由此产生的分析方法比其模拟对应方法快得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/02424c6d4044/peerj-09-11330-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/5d676b028bde/peerj-09-11330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/6fd054b44c87/peerj-09-11330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/cc87bfd78e4c/peerj-09-11330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/cfac3a757e8b/peerj-09-11330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/ad06def7fe9a/peerj-09-11330-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/02424c6d4044/peerj-09-11330-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/5d676b028bde/peerj-09-11330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/6fd054b44c87/peerj-09-11330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/cc87bfd78e4c/peerj-09-11330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/cfac3a757e8b/peerj-09-11330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/ad06def7fe9a/peerj-09-11330-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14ce/8067912/02424c6d4044/peerj-09-11330-g006.jpg

相似文献

[1]
Fast computational mutation-response scanning of proteins.

PeerJ. 2021-4-21

[2]
Intragenic compensation through the lens of deep mutational scanning.

Biophys Rev. 2022-10-26

[3]
Characterization of compensated mutations in terms of structural and physico-chemical properties.

J Mol Biol. 2007-1-5

[4]
Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.

J Am Chem Soc. 2010-5-26

[5]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[6]
Predicting binding affinity changes from long-distance mutations using molecular dynamics simulations and Rosetta.

Proteins. 2023-7

[7]
Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.

J Mol Model. 2014-6

[8]
Potts Hamiltonian Models and Molecular Dynamics Free Energy Simulations for Predicting the Impact of Mutations on Protein Kinase Stability.

J Phys Chem B. 2024-2-22

[9]
Compensated pathogenic deviations.

Biomol Concepts. 2011-8-1

[10]
The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations.

Elife. 2021-2-1

本文引用的文献

[1]
The variation among sites of protein structure divergence is shaped by mutation and scaled by selection.

Curr Res Struct Biol. 2020-8-26

[2]
Adaptability and specificity: how do proteins balance opposing needs to achieve function?

Curr Opin Struct Biol. 2021-4

[3]
Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations.

Mol Syst Biol. 2020-7

[4]
Perturb-Scan-Pull: A Novel Method Facilitating Conformational Transitions in Proteins.

J Chem Theory Comput. 2020-6-9

[5]
Residue-Level Allostery Propagates through the Effective Coarse-Grained Hessian.

J Chem Theory Comput. 2020-4-17

[6]
Identification of key sites controlling protein functional motions by using elastic network model combined with internal coordinates.

J Chem Phys. 2019-7-28

[7]
Predicted dynamical couplings of protein residues characterize catalysis, transport and allostery.

Bioinformatics. 2019-12-1

[8]
Shared Signature Dynamics Tempered by Local Fluctuations Enables Fold Adaptability and Specificity.

Mol Biol Evol. 2019-9-1

[9]
Large-scale in-silico statistical mutagenesis analysis sheds light on the deleteriousness landscape of the human proteome.

Sci Rep. 2018-11-19

[10]
Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.

Biochim Biophys Acta Gen Subj. 2018-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索