Jia Tao, Chen Zhuoyu, Rebec Slavko N, Hashimoto Makoto, Lu Donghui, Devereaux Thomas P, Lee Dung-Hai, Moore Robert G, Shen Zhi-Xun
Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA.
Departments of Physics, Applied Physics, and Materials Science and Engineering Geballe Laboratory for Advanced Materials Stanford University Stanford CA 94305 USA.
Adv Sci (Weinh). 2021 Feb 14;8(9):2003454. doi: 10.1002/advs.202003454. eCollection 2021 May.
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway toward the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems connected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO, for systematic modulation of interfacial chemical potential. With the dramatic increase of electron accumulation at the LaTiO/SrTiO surface, providing a substantial surge of work function mismatch across the FeSe/oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicate the existence of an intrinsically anchored "magic" doping within the monolayer FeSe systems.
钛酸盐上单层FeSe中增强的超导性为高温超导体的合理设计开辟了一条引人入胜的途径。利用连接到同步辐射角分辨光电子能谱仪的最先进的氧化物加硫族化物分子束外延系统,在单层FeSe和SrTiO之间插入具有不同原子厚度的外延LaTiO层,以系统地调节界面化学势。随着LaTiO/SrTiO表面电子积累的急剧增加,在FeSe/氧化物界面提供了功函数失配的大幅跃升,发现单层FeSe中的电荷转移和超导能隙仍然显著稳健。这一意外发现表明在单层FeSe系统中存在一种内在固定的“神奇”掺杂。