Suppr超能文献

运用多变量分析探索雀鸟支原体病的病情进展。

USING MULTIVARIATE ANALYSES TO EXPLORE DISEASE PROGRESSION OF FINCH MYCOPLASMOSIS.

机构信息

Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, 339 Science Hall, Ames, Iowa 50011, USA.

Veterinary Diagnostic Laboratory, Iowa Department of Natural Resources, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, Iowa 50011, USA.

出版信息

J Wildl Dis. 2021 Jul 1;57(3):525-533. doi: 10.7589/JWD-D-20-00123.

Abstract

Lesion severity scales have been developed for a number of wildlife diseases causing external pathology. Perhaps the best known and most widely used scoring system has been developed for finch mycoplasmosis in which observers measure conjunctival pathology along a four-point scale of increasing severity. We developed novel techniques to characterize variation in host phenotype based on occupancy of multidimensional trait space (disease space). First, we used shape analysis to track distortions of the inner and outer eye rims, defined by 16 anatomical landmarks. Then, we used community analysis to evaluate pathology based on the presence or absence of a unique set of binary descriptors. We applied these techniques to experimental infection data to relate differences in conjunctival pathology to stage of infection. Specifically, by comparing specimens that received the same severity score at different time points in infection, we asked if shape or community analyses could distinguish between individuals in early infection versus those in recovery. We found that individual eyes followed predictable loops through disease space, tracking further from their origin with more severe pathology. Also, certain pathological descriptors were more likely to appear earlier versus later in infection. Our results indicated that leveraging differences in pathology captured in complex trait space could complement severity scores by better resolving the time course of infection from limited data points.

摘要

病变严重程度量表已针对多种导致外部病理学的野生动物疾病进行了开发。也许最著名和最广泛使用的评分系统是针对雀形目支原体病开发的,观察者沿着严重程度递增的四点量表来测量结膜病理学。我们开发了基于多维特征空间(疾病空间)的宿主表型变异的新方法。首先,我们使用形状分析来跟踪由 16 个解剖学标志定义的内眼和外眼边缘的扭曲。然后,我们使用群落分析来评估基于一组独特的二进制描述符存在与否的病理学。我们将这些技术应用于实验感染数据,将结膜病理学的差异与感染阶段联系起来。具体来说,通过比较在感染的不同时间点接受相同严重程度评分的标本,我们询问形状或群落分析是否可以区分早期感染的个体与恢复期的个体。我们发现,个体眼睛通过疾病空间遵循可预测的循环,随着病理学的加重,与原点的距离进一步增加。此外,某些病理描述符在感染的早期出现的可能性大于后期。我们的结果表明,利用复杂特征空间中捕获的病理学差异可以通过更好地从有限的数据点解析感染过程来补充严重程度评分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验