Suppr超能文献

一种用于聚合多媒体文档网络搜索结果的非线性发现架构。

An architecture for non-linear discovery of aggregated multimedia document web search results.

作者信息

Khan Abdur Rehman, Rashid Umer, Saleem Khalid, Ahmed Adeel

机构信息

Department of Computer Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

出版信息

PeerJ Comput Sci. 2021 Apr 21;7:e449. doi: 10.7717/peerj-cs.449. eCollection 2021.

Abstract

The recent proliferation of multimedia information on the web enhances user information need from simple textual lookup to multi-modal exploration activities. The current search engines act as major gateways to access the immense amount of multimedia data. However, access to the multimedia content is provided by aggregating disjoint multimedia search verticals. The aggregation of the multimedia search results cannot consider relationships in them and are partially blended. Additionally, the search results' presentation is via linear lists, which cannot support the users' non-linear navigation patterns to explore the multimedia search results. Contrarily, users' are demanding more services from search engines. It includes adequate access to navigate, explore, and discover multimedia information. Our discovery approach allow users to explore and discover multimedia information by semantically aggregating disjoint verticals using sentence embeddings and transforming snippets into conceptually similar multimedia document groups. The proposed aggregation approach retains the relationship in the retrieved multimedia search results. A non-linear graph is instantiated to augment the users' non-linear information navigation and exploration patterns, which leads to discovering new and interesting search results at various aggregated granularity levels. Our method's empirical evaluation results achieve 99% accuracy in the aggregation of disjoint search results at different aggregated search granularity levels. Our approach provides a standard baseline for the exploration of multimedia aggregation search results.

摘要

网络上多媒体信息的近期激增,提升了用户的信息需求,从简单的文本查找转变为多模态探索活动。当前的搜索引擎是访问海量多媒体数据的主要通道。然而,多媒体内容的访问是通过聚合不相关的多媒体搜索垂直领域来提供的。多媒体搜索结果的聚合无法考虑其中的关系,且只是部分融合。此外,搜索结果的呈现是通过线性列表,这无法支持用户以非线性导航模式来探索多媒体搜索结果。相反,用户对搜索引擎的服务要求越来越高。这包括能够充分访问、浏览和发现多媒体信息。我们的发现方法允许用户通过使用句子嵌入对不相关的垂直领域进行语义聚合,并将片段转换为概念上相似的多媒体文档组,来探索和发现多媒体信息。所提出的聚合方法保留了检索到的多媒体搜索结果中的关系。实例化一个非线性图以增强用户的非线性信息导航和探索模式,这会在各种聚合粒度级别上发现新的有趣的搜索结果。我们方法的实证评估结果在不同聚合搜索粒度级别上对不相关搜索结果的聚合中达到了99%的准确率。我们的方法为多媒体聚合搜索结果的探索提供了一个标准基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5219/8080422/5efa00fd53f3/peerj-cs-07-449-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验