文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

F-氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描中的主动脉壁分段:基于人工智能的自动分段与手动分段的头对头比较。

Aortic wall segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison of artificial intelligence-based versus manual segmentation.

机构信息

Department of Nuclear Medicine, Odense University Hospital, 5000, Odense, Denmark.

Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

J Nucl Cardiol. 2022 Aug;29(4):2001-2010. doi: 10.1007/s12350-021-02649-z. Epub 2021 May 12.


DOI:10.1007/s12350-021-02649-z
PMID:33982202
Abstract

BACKGROUND: We aimed to establish and test an automated AI-based method for rapid segmentation of the aortic wall in positron emission tomography/computed tomography (PET/CT) scans. METHODS: For segmentation of the wall in three sections: the arch, thoracic, and abdominal aorta, we developed a tool based on a convolutional neural network (CNN), available on the Research Consortium for Medical Image Analysis (RECOMIA) platform, capable of segmenting 100 different labels in CT images. It was tested on F-sodium fluoride PET/CT scans of 49 subjects (29 healthy controls and 20 angina pectoris patients) and compared to data obtained by manual segmentation. The following derived parameters were compared using Bland-Altman Limits of Agreement: segmented volume, and maximal, mean, and total standardized uptake values (SUVmax, SUVmean, SUVtotal). The repeatability of the manual method was examined in 25 randomly selected scans. RESULTS: CNN-derived values for volume, SUVmax, and SUVtotal were all slightly, i.e., 13-17%, lower than the corresponding manually obtained ones, whereas SUVmean values for the three aortic sections were virtually identical for the two methods. Manual segmentation lasted typically 1-2 hours per scan compared to about one minute with the CNN-based approach. The maximal deviation at repeat manual segmentation was 6%. CONCLUSIONS: The automated CNN-based approach was much faster and provided parameters that were about 15% lower than the manually obtained values, except for SUVmean values, which were comparable. AI-based segmentation of the aorta already now appears as a trustworthy and fast alternative to slow and cumbersome manual segmentation.

摘要

背景:我们旨在建立和测试一种基于人工智能的自动方法,用于快速分割正电子发射断层扫描/计算机断层扫描(PET/CT)扫描中的主动脉壁。

方法:为了分割主动脉壁的三个部分:升主动脉、胸主动脉和腹主动脉,我们开发了一种基于卷积神经网络(CNN)的工具,该工具可在 Research Consortium for Medical Image Analysis(RECOMIA)平台上使用,能够对 CT 图像中的 100 个不同标签进行分割。该工具在 49 名受试者(29 名健康对照者和 20 名心绞痛患者)的 F-氟代脱氧葡萄糖 PET/CT 扫描中进行了测试,并与手动分割获得的数据进行了比较。使用 Bland-Altman 协议界限比较了以下衍生参数:分割体积以及最大、平均和总标准化摄取值(SUVmax、SUVmean、SUVtotal)。在 25 个随机选择的扫描中检查了手动方法的可重复性。

结果:CNN 衍生的体积、SUVmax 和 SUVtotal 值均略低(13-17%),而三个主动脉部分的 SUVmean 值对于两种方法几乎相同。手动分割每扫描通常需要 1-2 小时,而基于 CNN 的方法只需大约 1 分钟。重复手动分割的最大偏差为 6%。

结论:基于人工智能的自动方法更快,提供的参数比手动获得的参数低约 15%,除了 SUVmean 值,这两种方法相当。基于人工智能的主动脉分割现在已经成为一种可靠且快速的替代缓慢而繁琐的手动分割的方法。

相似文献

[1]
Aortic wall segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison of artificial intelligence-based versus manual segmentation.

J Nucl Cardiol. 2022-8

[2]
"Global" cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison.

J Nucl Cardiol. 2022-10

[3]
Common carotid segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison of artificial intelligence-based and manual method.

Clin Physiol Funct Imaging. 2023-3

[4]
Artificial intelligence-based versus manual assessment of prostate cancer in the prostate gland: a method comparison study.

Clin Physiol Funct Imaging. 2019-11

[5]
Automated multiclass segmentation, quantification, and visualization of the diseased aorta on hybrid PET/CT-SEQUOIA.

Med Phys. 2024-6

[6]
Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.

Eur J Radiol. 2019-2-1

[7]
PET/CT imaging of spinal inflammation and microcalcification in patients with low back pain: A pilot study on the quantification by artificial intelligence-based segmentation.

Clin Physiol Funct Imaging. 2022-7

[8]
Quantitative analysis of aortic Na[F]F uptake in macrocalcifications and microcalcifications in PET/CT scans.

Med Phys. 2024-4

[9]
RECOMIA-a cloud-based platform for artificial intelligence research in nuclear medicine and radiology.

EJNMMI Phys. 2020-8-4

[10]
Training and assessing convolutional neural network performance in automatic vascular segmentation using Ga-68 DOTATATE PET/CT.

Int J Cardiovasc Imaging. 2024-9

引用本文的文献

[1]
Reproducibility of F-Sodium Fluoride Positron Emission Tomography for Assessing Microcalcification in Coronary Arterial and Thoracic Aortic Atherosclerosis: Is the Signal below the Resolution of PET?

Curr Cardiol Rep. 2025-5-14

[2]
Auto-segmentation, radiomic reproducibility, and comparison of radiomics between manual and AI-derived segmentations for coronary arteries in cardiac [F]NaF PET/CT images.

EJNMMI Phys. 2025-4-27

[3]
An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images.

Biomolecules. 2023-2-9

[4]
NaF-PET Imaging of Atherosclerosis Burden.

J Imaging. 2023-1-30

[5]
Common carotid segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison of artificial intelligence-based and manual method.

Clin Physiol Funct Imaging. 2023-3

[6]
PET-Based Imaging with F-FDG and F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders.

Diagnostics (Basel). 2021-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索