Suppr超能文献

基于人工智能分割的定量 PET/CT 成像在腰痛患者脊柱炎症和微钙化中的应用:一项初步研究。

PET/CT imaging of spinal inflammation and microcalcification in patients with low back pain: A pilot study on the quantification by artificial intelligence-based segmentation.

机构信息

Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.

Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

Clin Physiol Funct Imaging. 2022 Jul;42(4):225-232. doi: 10.1111/cpf.12751. Epub 2022 Apr 1.

Abstract

BACKGROUND

Current imaging modalities are often incapable of identifying nociceptive sources of low back pain (LBP). We aimed to characterize these by means of positron emission tomography/computed tomography (PET/CT) of the lumbar spine region applying tracers F-fluorodeoxyglucose (FDG) and F-sodium fluoride (NaF) targeting inflammation and active microcalcification, respectively.

METHODS

Using artificial intelligence (AI)-based quantification, we compared PET findings in two sex- and age-matched groups, a case group of seven males and five females, mean age 45 ± 14 years, with ongoing LBP and a similar control group of 12 pain-free individuals. PET/CT scans were segmented into three distinct volumes of interest (VOIs): lumbar vertebral bodies, facet joints and intervertebral discs. Maximum, mean and total standardized uptake values (SUVmax, SUVmean and SUVtotal) for FDG and NaF uptake in the 3 VOIs were measured and compared between groups. Holm-Bonferroni correction was applied to adjust for multiple testing.

RESULTS

FDG uptake was slightly higher in most locations of the LBP group including higher SUVmean in the intervertebral discs (0.96 ± 0.34 vs. 0.69 ± 0.15). All NaF uptake values were higher in cases, including higher SUVmax in the intervertebral discs (11.63 ± 3.29 vs. 9.45 ± 1.32) and facet joints (14.98 ± 6.55 vs. 10.60 ± 2.97).

CONCLUSION

Observed intergroup differences suggest acute inflammation and microcalcification as possible nociceptive causes of LBP. AI-based quantification of relevant lumbar VOIs in PET/CT scans of LBP patients and controls appears to be feasible. These promising, early findings warrant further investigation and confirmation.

摘要

背景

目前的影像学方法往往无法确定慢性腰痛(LBP)的疼痛来源。我们旨在通过腰椎区域的正电子发射断层扫描/计算机断层扫描(PET/CT),应用针对炎症和活跃微钙化的示踪剂 F-氟脱氧葡萄糖(FDG)和 F-氟化钠(NaF)来对其进行特征描述。

方法

使用基于人工智能(AI)的定量分析,我们比较了两组男性和女性年龄匹配的患者,包括 7 名男性和 5 名女性,平均年龄 45±14 岁,持续存在 LBP 和类似的 12 名无痛个体对照组。PET/CT 扫描被分割为三个不同的感兴趣区(VOI):腰椎椎体、关节突关节和椎间盘。在 3 个 VOI 中测量并比较了 FDG 和 NaF 摄取的最大、平均和总标准化摄取值(SUVmax、SUVmean 和 SUVtotal)。应用 Holm-Bonferroni 校正法调整多重检测。

结果

LBP 组的大多数部位的 FDG 摄取略高,包括椎间盘的 SUVmean 较高(0.96±0.34 与 0.69±0.15)。所有 NaF 摄取值均在病例组中较高,包括椎间盘的 SUVmax 较高(11.63±3.29 与 9.45±1.32)和关节突关节的 SUVmax 较高(14.98±6.55 与 10.60±2.97)。

结论

观察到的组间差异表明急性炎症和微钙化可能是 LBP 的疼痛原因。对 LBP 患者和对照组的腰椎 PET/CT 扫描中相关腰椎 VOI 进行基于 AI 的定量分析似乎是可行的。这些有希望的初步发现值得进一步研究和确认。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e17/9322590/aadb93f40944/CPF-42-225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验