Service d'Hématologie Biologique, CHU Amiens Picardie, France.
Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.
Genes Chromosomes Cancer. 2021 Oct;60(10):657-667. doi: 10.1002/gcc.22971. Epub 2021 May 26.
Acute lymphoblastic leukemias (ALL) are characterized by a large number of cytogenetic abnormalities of clinical interest that require the use of several complementary techniques. Optical genome mapping (OGM) is based on analysis of ultra-high molecular weight DNA molecules that provides a high-resolution genome-wide analysis highlighting copy number and structural anomalies, including balanced translocations. We compared OGM to standard techniques (karyotyping, fluorescent in situ hybridization, single nucleotide polymorphism-array and reverse transcription multiplex ligation-dependent probe amplification) in 10 selected B or T-ALL. Eighty abnormalities were found using standard techniques of which 72 (90%) were correctly detected using OGM. Eight discrepancies were identified, while 12 additional anomalies were found by OGM. Among the discrepancies, four were detected in raw data but not retained because of filtering issues. However, four were truly missed, either because of a low variant allele frequency or because of a low coverage of some regions. Of the additional anomalies revealed by OGM, seven were confirmed by another technique, some of which are recurrent in ALL such as LMO2-TRA and MYC-TRB fusions. Despite false positive anomalies due to background noise and a case of inter-sample contamination secondarily identified, the OGM technology was relatively simple to use with little practice. Thus, OGM represents a promising alternative to cytogenetic techniques currently performed for ALL characterization. It enables a time and cost effective analysis allowing identification of complex cytogenetic events, including those currently inaccessible to standard techniques.
急性淋巴细胞白血病(ALL)的特征是具有大量临床相关的细胞遗传学异常,需要使用几种互补技术。光学基因组图谱(OGM)基于超高分子量 DNA 分子的分析,提供了高分辨率的全基因组分析,突出了拷贝数和结构异常,包括平衡易位。我们将 OGM 与标准技术(核型分析、荧光原位杂交、单核苷酸多态性微阵列和逆转录多重连接依赖性探针扩增)在 10 例选定的 B 或 T-ALL 中进行了比较。使用标准技术发现了 80 种异常,其中 72 种(90%)使用 OGM 正确检测到。发现了 8 个差异,而 OGM 发现了 12 个额外的异常。在差异中,有 4 个在原始数据中检测到,但由于过滤问题而未保留。然而,有 4 个确实被遗漏了,要么是因为变异等位基因频率低,要么是因为某些区域的覆盖度低。OGM 揭示的额外异常中有 7 个被另一种技术证实,其中一些在 ALL 中是反复出现的,如 LMO2-TRA 和 MYC-TRB 融合。尽管由于背景噪声导致出现假阳性异常,并且由于样本间污染而在后续识别出一个案例,但 OGM 技术相对简单易用,只需很少的实践。因此,OGM 代表了目前用于 ALL 特征描述的细胞遗传学技术的一种有前途的替代方法。它能够进行时间和成本有效的分析,从而识别复杂的细胞遗传学事件,包括目前无法通过标准技术获得的事件。