Research Institute of Child Development and Education, University of Amsterdam, P. O. Box 15776, 1001 NG, Amsterdam, The Netherlands.
Qual Life Res. 2022 Jan;31(1):25-36. doi: 10.1007/s11136-021-02840-2. Epub 2021 May 13.
Mokken scale analysis (MSA) is an attractive scaling procedure for ordinal data. MSA is frequently used in health-related quality of life research. Two of MSA's prime features are the scalability coefficients and the automated item selection procedure (AISP). The AISP partitions a (large) set of items into scales based on the observed item scores; the resulting scales can be used as measurement instruments. There exist two issues in MSA: First, point estimates, standard errors, and test statistics for scalability coefficients are inappropriate for clustered item scores, which are omnipresent in quality of life research data. Second, the AISP insufficiently takes sampling fluctuation of Mokken's scalability coefficients into account.
We solved both issues by providing point estimates and standard errors for the scalability coefficients for clustered data and by implementing a Wald-based significance test in the AISP algorithm, resulting in a test-guided AISP (T-AISP), that is available for both nonclustered and clustered test scores.
We integrated the T-AISP into a two-step, test-guided MSA for scale construction, to guide the analysis for nonclustered and clustered data. The first step is performing a T-AISP and select the final scale(s). For clustered data, within-group dependency is investigated on the final scale(s). In the second step, the strength of the scale(s) is determined and further analyses are performed. The procedure was demonstrated on clustered item scores obtained from administering a questionnaire on quality of life in schools to 639 students nested in 30 classrooms.
We developed a two-step, test-guided MSA for scale construction that takes into account sample fluctuation of all scalability coefficients and that can be applied to item scores obtained by a nonclustered or clustered sampling design.
Mokken 量表分析(MSA)是一种用于有序数据的有吸引力的量表编制方法。MSA 在健康相关生活质量研究中经常被使用。MSA 的两个主要特点是可.scale 系数和自动项目选择程序(AISP)。AISP 根据观察到的项目得分将(大量)项目集划分为量表;由此产生的量表可以用作测量工具。MSA 存在两个问题:首先,对于聚类项目得分,可.scale 系数的点估计值、标准误差和检验统计量是不合适的,聚类项目得分在生活质量研究数据中普遍存在。其次,AISP 没有充分考虑 Mokken 可.scale 系数的抽样波动。
我们通过为聚类数据的可.scale 系数提供点估计值和标准误差,并在 AISP 算法中实现基于 Wald 的显著性检验,解决了这两个问题,从而得到了测试引导的 AISP(T-AISP),该算法既适用于非聚类数据也适用于聚类数据。
我们将 T-AISP 集成到一个两步、测试引导的量表构建方法中,以指导非聚类和聚类数据的分析。第一步是执行 T-AISP 并选择最终的量表。对于聚类数据,会在最终的量表上调查组内依赖性。在第二步中,确定量表的强度并进行进一步的分析。该程序在对 639 名嵌套在 30 个教室中的学生进行学校生活质量问卷调查得到的聚类项目得分上进行了演示。
我们开发了一个两步、测试引导的量表构建方法,该方法考虑了所有可.scale 系数的样本波动,可应用于非聚类或聚类抽样设计获得的项目得分。