Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan.
J Theor Biol. 2021 Sep 21;525:110758. doi: 10.1016/j.jtbi.2021.110758. Epub 2021 May 11.
Traditional predictive microbiology is not suited for cell growth predictions for low-level contamination, where individual cell heterogeneity becomes apparent. Accordingly, we simulated a stochastic birth process of bacteria population using kinetic parameters. We predicted the variation in behavior of Salmonella enterica serovar Typhimurium cells at low inoculum density. The modeled cells were grown in tryptic soy broth at 25 °C. Kinetic growth parameters were first determined empirically for an initial cell number of 10 cells. Monte Carlo simulation based on the growth kinetics and Poisson distribution for different initial cell numbers predicted the results of 50 replicate growth experiments with the initial cell number of 1, 10, and 64 cells. Indeed, measured behavior of 85% cells fell within the 95% prediction area of the simulation. The calculations link the kinetic and stochastic birth process with Poisson distribution. The developed model can be used to calculate the probability distribution of population size for exposure assessment and for the evaluation of a probability that a pathogen would exceed critical contamination level during food storage.
传统的预测微生物学不适用于低水平污染的细胞生长预测,因为在这种情况下单个细胞的异质性变得明显。因此,我们使用动力学参数模拟了细菌群体的随机出生过程。我们预测了低接种密度下鼠伤寒沙门氏菌细胞行为的变化。模型化的细胞在 25°C 的胰蛋白酶大豆肉汤中生长。首先根据初始细胞数为 10 个细胞的经验确定了动力学生长参数。基于生长动力学和泊松分布的蒙特卡罗模拟,对不同初始细胞数进行了预测,结果与初始细胞数为 1、10 和 64 个细胞的 50 个重复生长实验的结果一致。实际上,85%的细胞的实测行为落在模拟的 95%预测区域内。该计算将动力学和随机出生过程与泊松分布联系起来。所开发的模型可用于计算种群规模的概率分布,以便进行暴露评估,并评估病原体在食品储存过程中超过临界污染水平的概率。