Suppr超能文献

不同培养基调控下的生物膜形成:对发电的启示。

Distinct biofilm formation regulated by different culture media: Implications to electricity generation.

机构信息

College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

出版信息

Bioelectrochemistry. 2021 Aug;140:107826. doi: 10.1016/j.bioelechem.2021.107826. Epub 2021 Apr 27.

Abstract

Biofilm of Shewanella oneidensis MR-1 is extensively studied as it can transform organic compounds directly into electricity. Although revealing the biofilm regulation mechanism is crucial for enhancing bio-current, studies regarding the mechanism by which the culture condition affects biofilm formation are still lacking. The biofilm formation of S. oneidensis MR-1 in two typical media with same electron donor was investigated in this study. Bio-electricity increased 1.8 times in medium with phosphate-buffered saline (PBS) than in piperazine-1,4-bisethanesulfonic acid (PIPES). Biofilm total protein has 1.5-fold of difference between two media at day 3, and biofilm structures also differed; a fluffy biofilm with curled cells was formed in medium with PBS, whereas a compact, ordered, and closely attached biofilm was formed in medium with PIPES. Transcriptome studies clarified that the expression of genes beneficial for cell aggregation [e.g., aggA (2.3 fold), bpfA (2.8 fold) and csgB (3.9 fold)] in medium with PIPES was significantly upregulated, thus provided an explanation for the specific biofilm structure. Buffer concentration was proved to be a critical factor impacted cell morphology and current generation. The maximum current density in 30 mM of PBS and PIPES is 165 and 159 μA·cm respectively, but it increased to 327 and 274 μA·cm in 200 mM of PBS and PIPES. This study provides new insights into the mechanism of medium-dependent biofilm regulation, which will be beneficial for developing simple and efficient strategies to enhance bio-electricity generation.

摘要

希瓦氏菌 MR-1 的生物膜被广泛研究,因为它可以直接将有机化合物转化为电能。虽然揭示生物膜调控机制对于增强生物电流至关重要,但关于培养条件如何影响生物膜形成的机制的研究仍然缺乏。本研究调查了两种具有相同电子供体的典型培养基中 S. oneidensis MR-1 的生物膜形成。与哌嗪-1,4-双乙磺酸(PIPES)相比,磷酸盐缓冲盐水(PBS)中的生物电增加了 1.8 倍。第 3 天,两种培养基之间的生物膜总蛋白差异有 1.5 倍,生物膜结构也不同;在 PBS 培养基中形成了蓬松的卷曲细胞生物膜,而在 PIPES 培养基中形成了紧密附着的紧凑、有序的生物膜。转录组研究阐明了 PIPES 培养基中有利于细胞聚集的基因[例如 aggA(2.3 倍)、bpfA(2.8 倍)和 csgB(3.9 倍)]的表达显著上调,从而解释了特定的生物膜结构。缓冲浓度被证明是影响细胞形态和电流产生的关键因素。在 30 mM PBS 和 PIPES 中的最大电流密度分别为 165 和 159 μA·cm,而在 200 mM PBS 和 PIPES 中增加到 327 和 274 μA·cm。本研究为介质依赖性生物膜调控机制提供了新的见解,这将有助于开发简单有效的策略来增强生物电流产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验