Institute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, Germany.
Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
Sci Rep. 2024 Oct 5;14(1):23174. doi: 10.1038/s41598-024-73474-w.
Biofilm formation by Shewanella oneidensis has been extensively studied under oxic conditions; however, relatively little is known about biofilm formation under anoxic conditions and how biofilm architecture and composition can positively influence current generation in bioelectrochemical systems. In this study, we utilized a recently developed microfluidic biofilm analysis setup with automated 3D imaging to investigate the effects of extracellular electron acceptors and synthetic modifications to the extracellular polymeric matrix on biofilm formation. Our results with the wild type strain demonstrate robust biofilm formation even under anoxic conditions when fumarate is used as the electron acceptor. However, this pattern shifts when a graphite electrode is employed as the electron acceptor, resulting in biofilm formation falling below the detection limit of the optical coherence tomography imaging system. To manipulate biofilm formation, we aimed to express BpfG with a single amino acid substitution in the catalytic center (C116S) and to overexpress bpfA. Our analyses indicate that, under oxic conditions, overarching mechanisms predominantly influence biofilm development, rather than the specific mutations we investigated. Under anoxic conditions, the bpfG mutation led to a quantitative increase in biofilm formation, but both strains exhibited significant qualitative changes in biofilm architecture compared to the controls. When an anode was used as the sole electron acceptor, both the bpfA and bpfG mutations positively impacted mean current density, yielding a 1.8-fold increase for each mutation.
希瓦氏菌的生物膜形成已在好氧条件下得到广泛研究;然而,对于缺氧条件下的生物膜形成以及生物膜结构和组成如何积极影响生物电化学系统中的电流产生,人们知之甚少。在这项研究中,我们利用最近开发的具有自动 3D 成像功能的微流控生物膜分析装置,研究了细胞外电子受体和细胞外聚合物基质的合成修饰对生物膜形成的影响。我们使用野生型菌株的结果表明,即使在缺氧条件下使用富马酸盐作为电子受体时,也能形成稳健的生物膜。然而,当使用石墨电极作为电子受体时,这种模式发生了变化,导致生物膜形成低于光学相干断层扫描成像系统的检测限。为了操纵生物膜形成,我们旨在表达在催化中心(C116S)具有单个氨基酸取代的 BpfG,并过表达 bpfA。我们的分析表明,在好氧条件下,总体机制主要影响生物膜的发展,而不是我们研究的特定突变。在缺氧条件下,bpfG 突变导致生物膜形成的定量增加,但与对照相比,两种菌株的生物膜结构都发生了显著的定性变化。当阳极作为唯一的电子受体时,bpfA 和 bpfG 突变都对平均电流密度产生了积极影响,每个突变的电流密度增加了 1.8 倍。