Suppr超能文献

机器学习模型通过心率变异性指标识别出在怀孕期间接触 Zika 病毒的无症状幼儿。

Machine learning model on heart rate variability metrics identifies asymptomatic toddlers exposed to zika virus during pregnancy.

机构信息

Ottawa Hospital Research Institute, University of Ottawa, ON, Canada.

INAGEMP-Departamento de Genética-Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Brazil.

出版信息

Physiol Meas. 2021 Jun 17;42(5). doi: 10.1088/1361-6579/ac010e.

Abstract

. Although the Zika virus (ZIKV) seems to be prominently neurotropic, there are some reports of involvement of other organs, particularly the heart. Of special concern are those children exposed prenatally to ZIKV and born without microcephaly or other congenital anomalies. Electrocardiogram (ECG)-derived heart rate variability (HRV) metrics represent an attractive, low-cost, widely deployable tool for early identification of developmental functional alterations in exposed children born without such overt clinical symptoms. We hypothesized that HRV in such children would yield a biomarker of fetal ZIKV exposure. Our objective was to test this hypothesis in young children exposed to ZIKV during pregnancy.. We investigated the HRV properties of 21 children aged 4-25 months from Brazil. The infants were divided into two groups, the ZIKV-exposed ( = 13) and controls ( = 8). Single-channel ECG was recorded in each child at ∼15 months of age and HRV was analyzed in 5 min segments to provide a comprehensive characterization of the degree of variability and complexity of the heart rate.Using a cubic support vector machine classifier we identified babies as Zika cases or controls with a negative predictive value of 92% and a positive predictive value of 86%. Our results show that a machine learning model derived from HRV metrics can help differentiate between ZIKV-affected, yet asymptomatic, and non-ZIKV-exposed babies. We identified the box count as the best HRV metric in this study allowing such differentiation, regardless of the presence of microcephaly.We show that it is feasible to measure HRV in infants and toddlers using a small non-invasive portable ECG device and that such an approach may uncover the memory ofexposure to ZIKV. We discuss putative mechanisms. This approach may be useful for future studies and low-cost screening tools involving this challenging to examine population.

摘要

. 虽然寨卡病毒(ZIKV)似乎主要具有神经嗜性,但也有一些涉及其他器官的报道,特别是心脏。特别值得关注的是那些在产前暴露于 ZIKV 且出生时没有小头畸形或其他先天畸形的儿童。心电图(ECG)衍生的心率变异性(HRV)指标是一种有吸引力的、低成本的、广泛可部署的工具,可用于早期识别暴露于 ZIKV 而没有明显临床症状的儿童的发育功能改变。我们假设,此类儿童的 HRV 将产生胎儿 ZIKV 暴露的生物标志物。我们的目的是在怀孕时暴露于 ZIKV 的幼儿中检验这一假设。.. 我们调查了来自巴西的 21 名年龄在 4-25 个月的儿童的 HRV 特性。这些婴儿分为两组,ZIKV 暴露组(n=13)和对照组(n=8)。在每个孩子大约 15 个月大时记录单通道心电图,并在 5 分钟的时间段内分析 HRV,以全面描述心率的变异性和复杂性程度。使用立方支持向量机分类器,我们将婴儿识别为寨卡病例或对照,阴性预测值为 92%,阳性预测值为 86%。我们的结果表明,源自 HRV 指标的机器学习模型可帮助区分受 ZIKV 影响但无症状和未暴露于 ZIKV 的婴儿。我们确定了盒子计数是本研究中区分 ZIKV 影响和未受影响婴儿的最佳 HRV 指标,无论是否存在小头畸形。我们表明,使用小型非侵入性便携式 ECG 设备测量婴儿和幼儿的 HRV 是可行的,并且这种方法可能会发现暴露于 ZIKV 的记忆。我们讨论了推测的机制。这种方法可能对未来涉及这一难以检查人群的研究和低成本筛查工具有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验