Ruget Alice, McLaughlin Stephen, Henderson Robert K, Gyongy Istvan, Halimi Abderrahim, Leach Jonathan
Opt Express. 2021 Apr 12;29(8):11917-11937. doi: 10.1364/OE.415563.
The number of applications that use depth imaging is increasing rapidly, e.g. self-driving autonomous vehicles and auto-focus assist on smartphone cameras. Light detection and ranging (LIDAR) via single-photon sensitive detector (SPAD) arrays is an emerging technology that enables the acquisition of depth images at high frame rates. However, the spatial resolution of this technology is typically low in comparison to the intensity images recorded by conventional cameras. To increase the native resolution of depth images from a SPAD camera, we develop a deep network built to take advantage of the multiple features that can be extracted from a camera's histogram data. The network is designed for a SPAD camera operating in a dual-mode such that it captures alternate low resolution depth and high resolution intensity images at high frame rates, thus the system does not require any additional sensor to provide intensity images. The network then uses the intensity images and multiple features extracted from down-sampled histograms to guide the up-sampling of the depth. Our network provides significant image resolution enhancement and image denoising across a wide range of signal-to-noise ratios and photon levels. Additionally, we show that the network can be applied to other data types of SPAD data, demonstrating the generality of the algorithm.
使用深度成像的应用程序数量正在迅速增加,例如自动驾驶汽车和智能手机摄像头的自动对焦辅助功能。通过单光子敏感探测器(SPAD)阵列进行的光探测和测距(LIDAR)是一项新兴技术,能够以高帧率采集深度图像。然而,与传统相机记录的强度图像相比,这项技术的空间分辨率通常较低。为了提高SPAD相机深度图像的原始分辨率,我们开发了一个深度网络,该网络利用从相机直方图数据中提取的多种特征。该网络专为在双模式下运行的SPAD相机设计,以便它能以高帧率交替捕获低分辨率深度图像和高分辨率强度图像,因此该系统不需要任何额外的传感器来提供强度图像。然后,该网络使用强度图像和从下采样直方图中提取的多种特征来指导深度的上采样。我们的网络在广泛的信噪比和光子水平范围内提供了显著的图像分辨率增强和图像去噪功能。此外,我们表明该网络可以应用于SPAD数据的其他数据类型,证明了该算法的通用性。