Suppr超能文献

使用端到端立体匹配网络进行散斑投影轮廓测量的单次3D形状测量。

Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry.

作者信息

Yin Wei, Hu Yan, Feng Shijie, Huang Lei, Kemao Qian, Chen Qian, Zuo Chao

出版信息

Opt Express. 2021 Apr 26;29(9):13388-13407. doi: 10.1364/OE.418881.

Abstract

Speckle projection profilometry (SPP), which establishes the global correspondences between stereo images by projecting only a single speckle pattern, has the advantage of single-shot 3D reconstruction. Nevertheless, SPP suffers from the low matching accuracy of traditional stereo matching algorithms, which fundamentally limits its 3D measurement accuracy. In this work, we propose a single-shot 3D shape measurement method using an end-to-end stereo matching network for SPP. To build a high-quality SPP dataset for training the network, by combining phase-shifting profilometry (PSP) and temporal phase unwrapping techniques, high-precision absolute phase maps can be obtained to generate accurate and dense disparity maps with high completeness as the ground truth by phase matching. For the architecture of the network, a multi-scale residual subnetwork is first leveraged to synchronously extract compact feature tensors with 1/4 resolution from speckle images for constructing the 4D cost volume. Considering that the cost filtering based on 3D convolution is computationally costly, a lightweight 3D U-net network is proposed to implement efficient 4D cost aggregation. In addition, because the disparity maps in the SPP dataset should have valid values only in the foreground, a simple and fast saliency detection network is integrated to avoid predicting the invalid pixels in the occlusions and background regions, thereby implicitly enhancing the matching accuracy for valid pixels. Experiment results demonstrated that the proposed method improves the matching accuracy by about 50% significantly compared with traditional stereo matching methods. Consequently, our method achieves fast and absolute 3D shape measurement with an accuracy of about 100µm through a single speckle pattern.

摘要

散斑投影轮廓术(SPP)通过仅投影单个散斑图案来建立立体图像之间的全局对应关系,具有单次3D重建的优势。然而,SPP存在传统立体匹配算法匹配精度低的问题,这从根本上限制了其3D测量精度。在这项工作中,我们提出了一种使用端到端立体匹配网络的单次3D形状测量方法用于SPP。为了构建用于训练网络的高质量SPP数据集,通过结合相移轮廓术(PSP)和时间相位展开技术,可以获得高精度的绝对相位图,通过相位匹配生成准确、密集且具有高完整性的视差图作为地面真值。对于网络架构,首先利用多尺度残差子网从散斑图像中同步提取分辨率为1/4的紧凑特征张量,用于构建4D代价体。考虑到基于3D卷积的代价滤波计算成本高,提出了一种轻量级3D U-net网络来实现高效的4D代价聚合。此外,由于SPP数据集中的视差图仅应在前景中具有有效值,因此集成了一个简单快速的显著性检测网络,以避免预测遮挡和背景区域中的无效像素,从而隐式提高有效像素的匹配精度。实验结果表明,与传统立体匹配方法相比,所提方法的匹配精度显著提高了约50%。因此,我们的方法通过单个散斑图案实现了快速且绝对的3D形状测量,精度约为100µm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验