Suppr超能文献

通过单孔径高通量成像系统实现的压缩光谱图像融合

Compressive spectral image fusion via a single aperture high throughput imaging system.

作者信息

Rueda-Chacon Hoover, Rojas Fernando, Arguello Henry

机构信息

Department of Computer Science, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia.

出版信息

Sci Rep. 2021 May 13;11(1):10311. doi: 10.1038/s41598-021-89788-y.

Abstract

Spectral image fusion techniques combine the detailed spatial information of a multispectral (MS) image and the rich spectral information of a hyperspectral (HS) image into a high-spatial and high-spectral resolution image. Due to the data deluge entailed by such images, new imaging modalities have exploited their intrinsic correlations in such a way that, a computational algorithm can fuse them from few multiplexed linear projections. The latter has been coined compressive spectral image fusion. State-of-the-art research work have focused mainly on the algorithmic part, simulating instrumentation characteristics and assuming independently registered sensors to conduct compressed MS and HS imaging. In this manuscript, we report on the construction of a unified computational imaging framework that includes a proof-of-concept optical testbed to simultaneously acquire MS and HS compressed projections, and an alternating direction method of multipliers algorithm to reconstruct high-spatial and high-spectral resolution images from the fused compressed measurements. The testbed employs a digital micro-mirror device (DMD) to encode and split the input light towards two compressive imaging arms, which collect MS and HS measurements, respectively. This strategy entails full light throughput sensing since no light is thrown away by the coding process. Further, different resolutions can be dynamically tested by binning the DMD and sensors pixels. Real spectral responses and optical characteristics of the employed equipment are obtained through a per-pixel point spread function calibration approach to enable accurate compressed image fusion performance. The proposed framework is demonstrated through real experiments within the visible spectral range using as few as 5% of the data.

摘要

光谱图像融合技术将多光谱(MS)图像的详细空间信息与高光谱(HS)图像的丰富光谱信息合并为高空间分辨率和高光谱分辨率的图像。由于这类图像带来的数据量大,新的成像模式利用了它们的内在相关性,使得一种计算算法能够从少量的复用线性投影中融合它们。后者被称为压缩光谱图像融合。当前的前沿研究工作主要集中在算法部分,模拟仪器特性并假设传感器已独立配准,以进行压缩MS和HS成像。在本论文中,我们报告了一个统一计算成像框架的构建,该框架包括一个概念验证光学试验台,用于同时获取MS和HS压缩投影,以及一种交替方向乘子算法,用于从融合的压缩测量中重建高空间分辨率和高光谱分辨率的图像。该试验台采用数字微镜器件(DMD)对输入光进行编码,并将其导向两个压缩成像臂,这两个臂分别收集MS和HS测量数据。这种策略实现了全光通量传感,因为编码过程中没有光被丢弃。此外,通过对DMD和传感器像素进行合并,可以动态测试不同的分辨率。通过逐像素点扩散函数校准方法获得所使用设备的实际光谱响应和光学特性,以实现准确的压缩图像融合性能。所提出的框架通过在可见光谱范围内进行的实际实验得到了验证,实验中使用的数据量低至5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0376/8119686/c33daa0e5c7b/41598_2021_89788_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验