Department of Automation, Tsinghua University, Beijing 100084, China.
High-Tech Institute of Xi'an, Xi'an 710025, China.
Sci Rep. 2017 Jan 27;7:41435. doi: 10.1038/srep41435.
Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.
将光谱成象与压缩感知 (CS) 相结合,可以通过充分利用自然图像中的固有冗余来实现高效的数据采集。目前的基于阵列传感器(例如 CCD 或 CMOS)的压缩多光谱成象仪受到光谱范围有限和相对较低的光子效率的限制。为了解决这些问题,本文提出了一种使用单像素探测器的多光谱成象方案。受当前空间光调制器 (SLM) 相对于目标重建的空间分辨率冗余的启发,我们设计了一种全光光谱分光装置,将从物体发出的光空间地分成具有不同光谱的几个对应部分。通过 SLM 用单独的代码同时对分离的光谱通道进行空间调制。这种无运动部件调制确保了系统的稳定和快速,而空间复用则确保了高效采集。在宏观和微观物体上构建并验证了一个用于 420-720nm 波长范围内 8 通道多光谱成象的概念验证设置,显示出在宏观和生物医学应用中高效多光谱成象仪的潜力。