Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, Geesthacht, 21502, Germany.
Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, Hamburg, 20146, Germany.
Macromol Rapid Commun. 2021 Jul;42(13):e2100160. doi: 10.1002/marc.202100160. Epub 2021 May 14.
Crosslinked poly(ethylene oxide) or poly(ethylene glycol) (PEG) is an ideal membrane material for separation of CO from light gases (e.g., H , N , O , CH etc). In these membranes, crosslinking is used as a tool to suppress crystallinity of the PEG segments. In spite of the extensive effort to develop crosslinked PEG membranes in the last two decades, it remains a challenge to establish the structure-property relationships. This paper points out the fundamental limitations to correlate the chain topology of a network with the gas permeation mechanism. While a quantitative comparison of the molecular weight between crosslinks of networks and gas permeation mechanism reported by different research groups is challenging, effort is made to draw a qualitative picture. In this review, a focus is also put on the progress of utilization of dangling chain fractions to tailor the gas permeation behavior of PEG networks.
交联聚(氧化乙烯)或聚(乙二醇)(PEG)是分离 CO 与轻气体(例如 H2、N2、O2、CH4 等)的理想膜材料。在这些膜中,交联被用作抑制 PEG 链段结晶度的工具。尽管在过去二十年中已经做出了广泛的努力来开发交联 PEG 膜,但建立结构-性能关系仍然是一个挑战。本文指出了将网络的链拓扑结构与气体渗透机制相关联的基本限制。虽然不同研究小组报道的网络交联的分子量与气体渗透机制之间的定量比较具有挑战性,但仍努力得出定性描述。在这篇综述中,还重点介绍了利用悬垂链段来调整 PEG 网络气体渗透行为的进展。