Lee Hyeongwoo, Woo Ju Young, Park Dae Young, Jo Inho, Park Jusun, Lee Yeunhee, Koo Yeonjeong, Choi Jinseong, Kim Hyojung, Kim Yong-Hyun, Jeong Mun Seok, Jeong Sohee, Park Kyoung-Duck
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea.
ACS Nano. 2021 May 25;15(5):9057-9064. doi: 10.1021/acsnano.1c02182. Epub 2021 May 14.
Strain engineering of perovskite quantum dots (pQDs) enables widely tunable photonic device applications. However, manipulation at the single-emitter level has never been attempted. Here, we present a tip-induced control approach combined with tip-enhanced photoluminescence (TEPL) spectroscopy to engineer strain, bandgap, and the emission quantum yield of a single pQD. Single CsPbBrI pQDs are clearly resolved through hyperspectral TEPL imaging with ∼10 nm spatial resolution. The plasmonic tip then directly applies pressure to a single pQD to facilitate a bandgap shift up to ∼62 meV with Purcell-enhanced PL increase as high as ∼10 for the strain-induced pQD. Furthermore, by systematically modulating the tip-induced compressive strain of a single pQD, we achieve dynamical bandgap engineering in a reversible manner. In addition, we facilitate the quantum dot coupling for a pQD ensemble with ∼0.8 GPa tip pressure at the nanoscale estimated theoretically. Our approach presents a strategy to tune the nano-opto-electro-mechanical properties of pQDs at the single-crystal level.
钙钛矿量子点(pQDs)的应变工程可实现广泛可调谐的光子器件应用。然而,从未有人尝试过在单发射体水平上进行操控。在此,我们提出一种结合针尖增强光致发光(TEPL)光谱的针尖诱导控制方法,以调控单个pQD的应变、带隙和发射量子产率。通过具有约10 nm空间分辨率的高光谱TEPL成像可清晰分辨单个CsPbBrI pQDs。然后,等离子体针尖直接对单个pQD施加压力,促使带隙移动高达约62 meV,且对于应变诱导的pQD,珀塞尔增强的PL增加高达约10倍。此外,通过系统地调节单个pQD的针尖诱导压缩应变,我们以可逆方式实现了动态带隙工程。另外,理论估计在纳米尺度上,我们通过约0.8 GPa的针尖压力促进了pQD集合体的量子点耦合。我们的方法提出了一种在单晶水平上调控pQDs纳米光电器械性能的策略。