Suppr超能文献

量子隧穿高速纳米激子调制器

Quantum tunneling high-speed nano-excitonic modulator.

作者信息

Lee Hyeongwoo, Kim Sujeong, Eom Seonhye, Ji Gangseon, Choi Soo Ho, Joo Huitae, Bae Jinhyuk, Kim Ki Kang, Kravtsov Vasily, Park Hyeong-Ryeol, Park Kyoung-Duck

机构信息

Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

出版信息

Nat Commun. 2024 Oct 9;15(1):8725. doi: 10.1038/s41467-024-52813-5.

Abstract

High-speed electrical control of nano-optoelectronic properties in two-dimensional semiconductors is a building block for the development of excitonic devices, allowing the seamless integration of nano-electronics and -photonics. Here, we demonstrate a high-speed electrical modulation of nanoscale exciton behaviors in a MoS monolayer at room temperature through a quantum tunneling nanoplasmonic cavity. Electrical control of tunneling electrons between Au tip and MoS monolayer facilitates the dynamic switching of neutral exciton- and trion-dominant states at the nanoscale. Through tip-induced spectroscopic analysis, we locally characterize the modified recombination dynamics, resulting in a significant change in the photoluminescence quantum yield. Furthermore, by obtaining a time-resolved second-order correlation function, we demonstrate that this electrically-driven nanoscale exciton-trion interconversion achieves a modulation frequency of up to 8 MHz. Our approach provides a versatile platform for dynamically manipulating nano-optoelectronic properties in the form of transformable excitonic quasiparticles, including valley polarization, recombination, and transport dynamics.

摘要

二维半导体中纳米光电子特性的高速电控制是激子器件发展的基石,它使得纳米电子学与光子学能够无缝集成。在此,我们展示了在室温下通过量子隧穿纳米等离子体腔对单层MoS₂中纳米级激子行为进行的高速电调制。金尖端与单层MoS₂之间隧穿电子的电控制有助于在纳米尺度上动态切换中性激子主导态和三重子主导态。通过尖端诱导光谱分析,我们对修饰后的复合动力学进行了局部表征,这导致了光致发光量子产率的显著变化。此外,通过获得时间分辨二阶关联函数,我们证明这种电驱动的纳米级激子 - 三重子相互转换实现了高达8 MHz的调制频率。我们的方法提供了一个通用平台,用于以可转换激子准粒子的形式动态操纵纳米光电子特性,包括能谷极化、复合和输运动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cba/11461740/7a5163064137/41467_2024_52813_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验