Suppr超能文献

基于深度学习的网络模型与传统方法评估海滩堆积物存量的比较研究。

A comparative study of deep learning-based network model and conventional method to assess beach debris standing-stock.

机构信息

Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.

Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.

出版信息

Mar Pollut Bull. 2021 Jul;168:112466. doi: 10.1016/j.marpolbul.2021.112466. Epub 2021 May 11.

Abstract

The conventional survey of marine debris standing-stock has various drawbacks such as high cost and inaccuracy because the total amount of debris in the whole beach is inferred using the results of the manual investigation in selected narrow areas. To overcome the disadvantages, an automatic detection method using a deep learning-based network model was developed to detect and quantify the beach debris. The network model developed in this study classified items with a precision of 0.87 (87%) mAP and showed <5% error compared to actual survey. This study is the first fieldwork in Korea that shows the difference between automatic and conventional methods to predict the beach debris standing-stock. The results provide essential information for the development of effective beach debris management systems and policies.

摘要

传统的海洋垃圾存量调查存在各种缺陷,例如成本高和不准确,因为整个海滩的垃圾总量是通过在选定的狭窄区域进行手动调查的结果推断出来的。为了克服这些缺点,开发了一种基于深度学习的网络模型的自动检测方法,以检测和量化海滩垃圾。本研究中开发的网络模型对物品的分类精度为 0.87(87%)mAP,与实际调查相比误差<5%。本研究是韩国首次进行的自动和传统方法之间差异的实地研究,以预测海滩垃圾存量。研究结果为开发有效的海滩垃圾管理系统和政策提供了重要信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验