Suppr超能文献

一种寻找岩石早期动态断裂的测试方法:使用 DIC 和 YOLOv5。

A Test Method for Finding Early Dynamic Fracture of Rock: Using DIC and YOLOv5.

机构信息

State Key Laboratory Mine Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan 232001, China.

School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China.

出版信息

Sensors (Basel). 2022 Aug 23;22(17):6320. doi: 10.3390/s22176320.

Abstract

Intelligent monitoring and early warning of rock mass failure is vital. To realize the early intelligent identification of dynamic fractures in the failure process of complex fractured rocks, 3D printing of the fracture network model was used to produce rock-like specimens containing 20 random joints. An algorithm for the early intelligent identification of dynamic fractures was proposed based on the YOLOv5 deep learning network model and DIC cloud. The results demonstrate an important relationship between the overall strength of the specimen with complex fractures and dynamic fracture propagation, and the overall specimen strength can be judged semi-quantitatively by counting dynamic fracture propagation. Before the initiation of each primary fracture, a strain concentration area appears, which indicates new fracture initiation. The dynamic evolution of primary fractures can be divided into four types: primary fractures, stress concentration areas, new fractures, and cross fractures. The cross fractures have the greatest impact on the overall strength of the specimen. The overall identification accuracy of the four types of fractures identified by the algorithm reached 88%, which shows that the method is fast, accurate, and effective for fracture identification and location, and classification of complex fractured rock masses.

摘要

岩体失稳的智能监测与预警至关重要。为实现复杂节理化岩石破坏过程中动态节理的早期智能识别,采用 3D 打印技术制作了包含 20 个随机节理的类岩石试件。基于 YOLOv5 深度学习网络模型和 DIC 云图,提出了一种动态节理的早期智能识别算法。研究结果表明,具有复杂节理的试件整体强度与动态节理扩展之间存在重要关系,通过计数动态节理扩展可以对整体试件强度进行半定量判断。在每个原生节理开始之前,都会出现应变集中区,这表明新的节理开始扩展。原生节理的动态演化可以分为四种类型:原生节理、应力集中区、新节理和交叉节理。交叉节理对试件的整体强度影响最大。算法识别的四种类型节理的整体识别准确率达到 88%,表明该方法在复杂节理岩体的断裂识别、定位和分类方面快速、准确、有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97fc/9460502/d8749c937d96/sensors-22-06320-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验